Accident Sequence Precursor Analyses Of Taiwan Nuclear Power Plants

by Yuan-Ching Chou and Ching-Hui Wu

2005 Asia-Pacific Conference on Risk Management and Safety

Outlines

Introduction

- Data Source of Potential ASP
- Selection of Potential ASP
- Quantification of Potential ASP
- Results and Discussion
- Future Work

Introduction

- Probabilistic Risk Assessment (PRA in nuclear industry,1975~Today)
- Accident Sequence Precursor (ASP of USNRC, 1979~Today)
- Major Purpose of ASP (SECY-04-0210): "To identify, document and rank those nuclear power plant operating events that most likely to lead to inadequate core cooling and severe core damage, if additional failures had occurred"

Introduction (cont'd 1)

Major procedures of US ASP Analysis

- 1. A computerized search to identify LERs involving failures of core damage mitigation functions;
- 2. An expert check to determine potential ASPs for detailed analysis;
- 3. Quantification of potential ASPs by using Standardized Plant Analysis Risk (SPAR) models;
- 4. Identification of ASPs; and
- 5. Review and insight analysis of ASPs.

Introduction (cont'd 2)

- Quantified Criteria of ASP: CCDP greater than 10⁻⁶ for precursors involving initiating event ∆CDP greater than 10⁻⁶ for precursors involving component failure
- Trend of US nuclear power plant core damage risk (from FY1993 through FY 2002, SECY-04-0210)

CCDP>10 ⁻³	No trend
10 ⁻³ >CCDP>10 ⁻⁴	Decreasing trend – almost statistically significant
10 ⁻⁴ >CCDP>10 ⁻⁵	Decreasing trend – statistically significant
10 ⁻⁵ >CCDP>10 ⁻⁶	Increasing trend – statistically significant

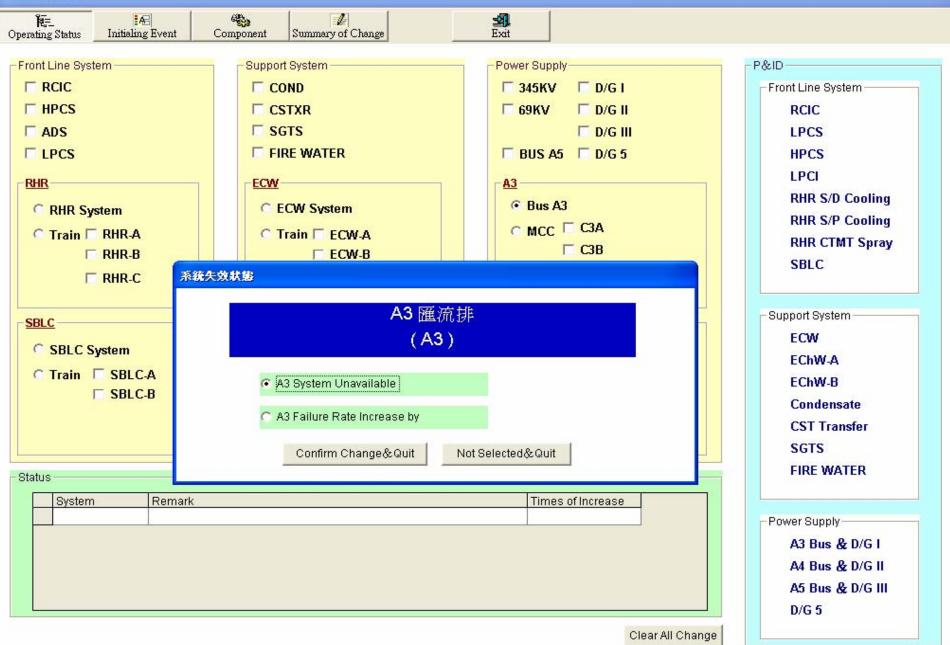
Introduction (cont'd 3)

PRA development in Taiwan

- 1. First PRA for the 2nd nuclear power plant (1982~1985, by AEC, TPC and INER)
- 2. PRA models for three nuclear power plants (1985~1991, by TPC and INER)
- 3. Living PRA for three nuclear power plants (1991~1996, by TPC and INER)
- 4. Risk informed applications of PRA (1996~today, AEC, TPC and INER)

Data Source of Potential ASP

- Atomic Energy Council annual reports
- Atomic Energy Council inspection reports
- Atomic Energy Council safety review reports
- Atomic Energy Council reportable event reports (RER)


Selection of Potential ASP

- 45 RERs for all three nuclear power plants from 2001 to 2005
- Criteria of exclusion from detailed analysis:
 - 1. Events occurred during reactor shutdown;
 - 2. Events involving containment system failure only;
 - 3. Events with no appreciable impact on safety system;
 - 4. Events involving shutdown by normal procedure.

Quantification of Potential ASP

- PRiSE (<u>PRA Model Based Risk Significance</u> <u>Evaluation</u>) model
 - 1. A fast running risk engine
 - 2. Plant specific risk models
 - 3. A tool for updating IE frequencies and failure prob.
 - 4. Calculation of risk indicators (CDP, CCDP, LERF)
 - 5. Calculation of risk importance (FV, RRW, RAW)
 - 6. Used by regulator, utility and research institute.

系统狀態變更

元件失效機率變更

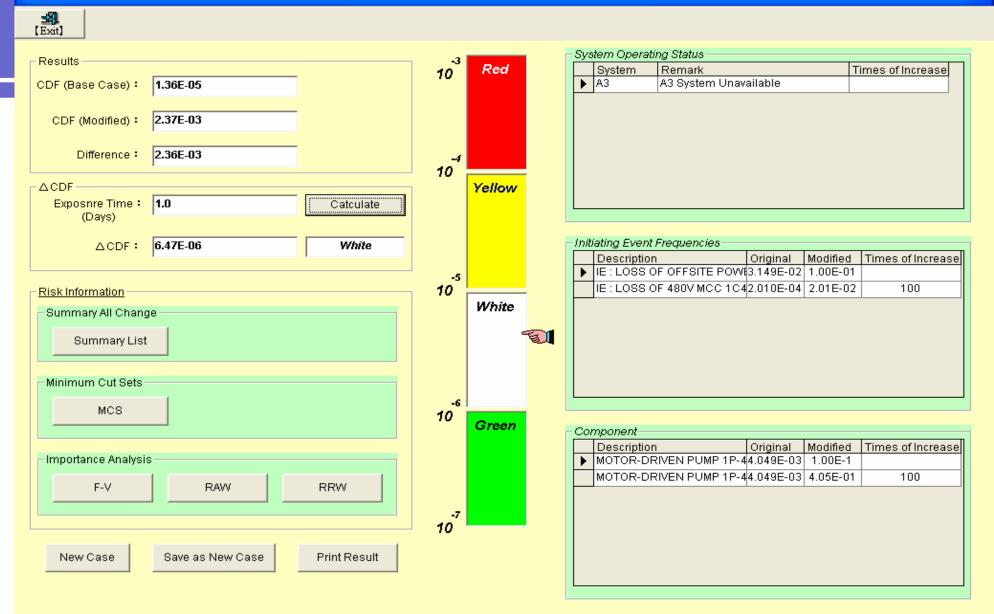
Initialing Event Component Summary of Change			
Component : Motor Driven Pump(MDP)		Confirm	
System : Times of Increase ? Times :		Confirm	
Component List			-
Description	Original	Modified	Times of Increase
MOTOR-DRIVEN PUMP 1P-41A FAILS TO START	4.05E-03	1.00E-01	-
PUMP(MOTOR DRIVEN) 1P-191A FAILS TO START	4.05E-03		
MOTOR-DRIVEN PUMP E12-1P-49A FAILS TO START	4.05E-03		
PUMP E21-1P83 FAILS TO START	4.05E-03		
MOTOR-DRIVEN PUMP 1P-4A (ECWS) FAILS TO START	4.05E-03	4.05E-01	100
PUMP 1VC-16A FAILS TO START (LOCAL FAULT)	4.05E-03		
MOTOR-DRIVEN PUMP 1P-41B FAILS TO START	4.05E-03		
PUMP(MOTOR DRIVEN) 1P-191B FAILS TO START	4.05E-03		
PUMP(MOTOR DRIVEN) E12-1P-49B FAILS TO START	4.05E-03		
MOTOR-DRIVEN PUMP E12-1P-49C FAILS TO START	4.05E-03		
MOTOR-DRIVEN PUMP 1P-4B FAILS TO START	4.05E-03		
MOTOR DRIVEN PUMP 1VC-16B (ECHW) FAILS TO START	4.05E-03		
PUMP(MOTOR DRIVEN) 1P-191C FAILS TO START	4.05E-03		
HPCS PUMP 1P-45 FAILS TO START	4.05E-03		
MOTOR-DRIVEN PUMP 1P116 FAILS TO START	4.05E-03		
Count : 2	Refres	h Probabilities	Clear All Change

-8	Status										
		Description	Original	Modified	Times of Increase						
		MOTOR-DRIVEN PUMP 1P-41A FAILS TO START	4.05E-03	1.00E-01							
		MOTOR-DRIVEN PUMP 1P-4A (ECWS) FAILS TO START	4.05E-03	4.05E-01	100						

肇始事件登生類率變更

)per	ten initialing Event Component Summary of			Exit			
	Initia	aling Event					- Previos Cases -	
[Description	Original	Modified	Times of Increase	ΠΙ		
		IE : LARGE LOCA	3.00E-05				Quote Cases M	odified Cases Delete Cases
		IE : BYPASS LOCA	1.70E-07				- Quote Cases	
		IE : RPV RUPTURE	2.70E-07					
		IE : INTERMEDIATE LOCA	4.00E-05				Title :	-
		IE : SMALL LOCA	3.83E-03				Create Name :	Administrator
		IE : MAIN CONDENSER ISOLATION TRANSIENT	2.15E-01				Create Name -	Auministrator
		IE : MSIVS_CLOSED TRANSIENT	3.06E-02				Create Time :	2005/8/19 10:47:14 AM
		IE : MAIN STEAM NOT ISOLATION TRANSIENT	1.35E+00					
		IE : LOSS OF OFFSITE POWER	3.15E-02	1.00E-01			Description :	
		IE : INADVERTENT OPEN OF ONE S/RV (IORV)	4.68E-02					
		IE : LOSS-OF-FEEDWATER	6.10E-02					
		IE : LOSS OF 480V MCC 1C4C	2.01E-04	2.01E-02	100			
		IE : LOSS OF COMPRESSED AIR	2.20E-04					
		IE : LOSS OF DC BUS 1RDC	6.70E-04					
		IE : LOSS OF DC BUS 1GDD	6.70E-04					
		IE : VLOCA AT LPCI INJECTION LINE A	4.28E-08					
		IE : VLOCA AT LPCI INJECTION LINE B	4.28E-08					
		IE : VLOCA AT LPCI INJECTION LINE C	3.29E-06					
		IE : VLOCA AT RHR S/D COOLING SUCTION	1.52E-07					
		IE : VLOCA AT RHR HEAD SPRAY INJECTION	3.29E-06					
		IE : VLOCA AT RHR S/D COOLING INJECTION LINE A (FW A)						
		IE : VLOCA AT RHR S/D COOLING INJECTION LINE B (FW B						
		IE : VLOCA AT LPCS INJECTION	3.29E-06					
		IE : VLOCA INDUCED LARGE LOCA OUTSIDE CTMT	9.23E-09					
		IE : VLOCA INDUCED LARGE LOCA INSIDE CTMT	9.44E-10					
								<u> </u>
		Clear All Change	resh Frequ	encies	Save New Case			

Summary of Change


)k=	A	8 8 38		<u>44</u>		3			
Operating Status	Initialing Event	Component	Summary of Change	Estimation		Exit			
- System Operating Status				 Initiating Even 	it Freguenci	es			1

ription	Original	Mod
OSS OF OFFSITE POWER	3.149E-02	1.00
OSS OF 480V MCC 1C4C	2.010E-04	2.01

	NO	adany Event Frequencies				
ise		Description	Original	Modified	Times of Increase	
		IE : LOSS OF OFFSITE POWER	3.149E-02	1.00E-01		
	Γ	IE : LOSS OF 480V MCC 1C4C	2.010E-04	2.01E-02	100	
	L					

Г	Component								
		Description	Original	Modified	Times of Increase				
	۲	MOTOR-DRIVEN PUMP 1P-41A FAILS TO START	4.049E-03	1.00E-1					
		MOTOR-DRIVEN PUMP 1P-4A (ECWS) FAILS TO START	4.049E-03	4.05E-01	100]			

Phase 2 Result

Results and Discussion

- Quantification results of potential ASP involving initiating events
- Quantification results of potential ASP involving component failures
- Insight of ASPs
- Discussion of all potential ASPs
- Discussion of a station blackout event

Table 1: Potential ASP Involving Initiating Event (2001 ~ 2005)

RER #	Plant (type)	Event Date	Description	ССДР
RER-94-31-001 3 rd (PWR) 3/25/05		Unit 1 general transient, main feedwater available, steam generator low-low level trip.	5.76E-7	
RER-94-32-001	3 rd (PWR)	1/29/05	Unit 2 general transient, main feedwater available, reactor trip.	2.01E-7
RER-93-11-001	1 st (BWR)	1/24/04	Unit 1 general transient, main condenser not isolated.	1.93E-7
RER-92-32-07-0	3 rd (PWR)	12/9/03	Unit 2 general transient, main feedwater available, reactor trip.	2.01E-7
RER-92-31-003	ER-92-31-003 3 rd (PWR) 9/1/03		Unit 1 general transient, main feedwater available, reactor trip.	2.01E-7
RER-92-31-004	3 rd (PWR)	9/4/03	Unit 1 loss of offsite power	6.01E-6
RER-92-32-003	3 rd (PWR)	9/1/03	Unit 2 general transient, main feedwater available, reactor trip.	2.01E-7
NA	1 st (BWR)	9/26/02	Unit 1 general transient, main condenser not isolated.	1.93E-7
NA	3 rd (PWR)	6/6/02	Unit 2 general transient, main feedwater available, reactor trip.	2.01E-7
NA	2 nd (BWR) 4/27/02		Unit 1 general transient, main condenser not isolated.	5.68E-7
NA	2 nd (BWR)	9/19/01	Unit 2 general transient, main condenser not isolated.	5.68E-7

Table 2: Potential ASP Involving Unavailability (2001 ~ 2005)

RER #	Plant (type)	Event Date	Description	△CDP
RER-94-12-002	1 st (BWR)	4/3/05	Unit 2 RCIC unavailable for 0.4 days	1.68E-8
RER-94-20-001	2 nd (BWR)	2/25/05	5 Unit 1 Loss of 69 kV power for 0.1 days Unit 1 Division III DG and HPCS unavailable for 0.76 days	
RER-93-22-001	2nd(BWR) 6/21/04 Unit 2 HPCS unavailable for 0.16 days		2.09E-8	
RER-92-32-004	3 rd (PWR)	9/4/03	Unit 2 4.16kV Bus unavailable for 0.1 days	
RER-92-31-005	3 rd (PWR)	9/4/03	Unit 1 Feedwater isolation for 0.1 days	1.37E-10
RER-92-11-001	1 st (BWR)	1/21/03	Unit 1 HPCI unavailable for 16 days	1.09E-6
RER-92-11-002	1 st (BWR)	4/24/03	Unit 1 RCIC unavailable for 0.5 days	2.10E-8
RER-92-11-005	1 st (BWR)	7/24/03	Unit 1 HPCI unavailable for 1.0 days	6.82E-8
RER-92-11-006	1 st (BWR)	9/1/03	Unit 1 RCIC unavailable for 0.01days	4.19E-10
NA	2 nd (BWR)	9/5/01	Unit 1 Loss of 69kV power for 0.06 days	8.71E-10
NA	2 nd (BWR)	9/5/01	Unit 2 Loss of 69kV power for 0.06 days	8.71E-10

ASP Involving Initiating Event

- Date: September 4 of 2003
- Plant/Unit: The 3rd NPP/Unit 1
- Operating Condition: About to connect to the grid
- Initiating Event: A circuit breaker failure in switch yard causing a loss of offsite power (LOOP) event
- Dominant Sequence:
 - 1. RPS, RCS, TB driven AFW, ECCS and Depressurization system are successful
 - 2. Secondary heat removal system and bleed & feed function fail due to long term failure of emergency DGs

ASP Involving Unavailability

- Date: January 21 of 2003
- Plant/Unit: The 1st NPP/Unit 1
- Operating Condition: Full Power
- Unavailability: Fast-start test failure of HPCI system (unavailable time is conservatively assumed as 16 days)
- Dominant Transient: Loss of feedwater event
- Root Cause: Vaporization of water in test line
- If the unavailable time is 1 day, then the △CDP becomes 16 times less.

Discussion of All Potential ASPs

• Potential ASP involving initiating event (Table 1)

7 of 11 ASP candidates occurred in the 3rd NPP
3 of these 7 events caused by failure of offsite power
2 of these 7 events caused by failure of I&C cards
2 of these 7 events caused by failure of FCV and TBCV

• Potential ASP involving component failure (Table 2)

5 of 11 ASP candidates occurred in the 1st NPP3 of these 5 events caused by test failure of RCIC2 of these 5 events caused by test failure of HPCI3 out of 4 candidates from the 2nd NPP caused by

failure of 69KV power supply

Discussion of A Station Blackout Event

- Date: March 18 of 2001
- Plant/Unit: The 3rd NPP/Unit 1
- Operating Condition: Shutdown
- Initiating Event: LOOP caused by a fire event at A-PB bus at unit 1
- Component Failure: 2 EDGs of unit 1 failed to supply power and caused a SBO event
- Termination: The 5th EDG lined up to the train-B

switch of unit 1

Station Blackout Event (cont'd)

Table 3: Risk Analysis for 318 SBO Event (C.H. Wu et al.)

Analysis Stage	Operational Modes	Initiating Event	Time Duration	CCDP
1	1 Hot Standby		15 min.	3.1E-2
2	2Hot Standby3Hot Standby4Hot Shutdown		1.75 hours	3.3E-3
3			4 hours	6.5E-4
4			11.5 hours	2.9E-4
5 Cold Shutdown		LOOP	52 hours	8.6E-5
6	6 Cold Shutdown		58 days	4.6E-8

Future Work

- To enlarge the scope of data source;
- To establish formal review processes of selection of potential ASPs;
- To include shutdown condition into the scope of analysis; and
- To set up a peer review procedure for the whole analysis.