A Bayesian Inference Algorithm to Identify Types of Accidents in Nuclear Power Plants

Kyung Min Kang and Moosung Jae*

Department of Nuclear Engineering Hanyang University, Seoul, KOREA

Contents

- Purposes
- Methods
- Modeling Process
- Results
- Conclusions

Purposes

Develop An Accident Diagnosis Algorithm

- Based on accident symptoms, components status and EOPs (Emergency Operating Procedure)
- Contribution to reduce human errors during accident diagnosis using EOPs

Methods

Modeling EOPs using Bayesian Theorem of Influence Diagrams

- Use of EOPs & FSAR (Final Safety Analysis Report)
- Collection of 13 symptoms
- Accident Scenarios
 - SLOCA
 - SGTRs

Methods

□ Symptoms of SLOCA

- Pressurizer level and pressure decrease
- Containment pressure, temperature, radiation and moisture increase
- RDT level, temperature and pressure increase
- SIAS, CIAS
- MSIS, AFAS, RAS

Methods

□ Symptoms of SGTRs

- Pressurizer level and pressure decrease
- S/G level increase
- Main steam line radiation increase
- AFAS

Definition of Influence Diagrams

- Compact Graphical and mathematical representation for complicated probabilistic relations
- Decision-making networks consisting of nodes and arcs

• 1st Step : Basic model

• 2nd Step : Extended model of symptoms nodes

Quantifications

Absorption of Nodes: Total Probability

(B)

Without dependency

$$P(A) = \int_{B,C} P(A, B, C)$$

= $\int_{B,C} P(A|B, C)P(C|B)P(B)$
= $\int_{B,C} P(A|B, C)P(C)P(B)$

With dependency

$$P(A) = \int_{B,C} P(A, B, C)$$
$$= \int_{B,C} P(A|B, C) P(C|B) P(B)$$

Quantifications

Arc Reversal between Nodes: Bayesian

P(AE) = P(A)P(E|A)= P(E)P(A|E)

$$P(A \mid E) = P(A) \frac{P(E \mid A)}{P(E)}$$

where, P(A|E): Posterior P(A): Prior

 $\frac{P(E|A)}{Pr(E)}$: Likelihood of Evidence

$$P(A_{j} | E) = \frac{P(A_{j}) \times L(E | A_{j})}{\int_{j=1}^{N} L(E | A_{j}) P(A_{j})}$$

Quantification process for a Basic node model

 $P(ACC_DIAGNOSIS|SG_RAD, SG_RAD_SENSOR) = ?$

Node Removal

 $P(SG_RAD^*) = \sum_i P(SG_RAD|SG_RAD_SENSOR_i)$

Arc Reversal

$P(ACC_DIAGNOSIS | SG_RAD^*)$ $= \frac{P(SG_RAD^* | ACC_DIAGNOSIS)P(ACC_DIAGNOSIS)}{P(SG_RAD^*)}$

Data Analysis

Accident Diagnosis Node

- PSA Data
 - Accident frequency : 1.19X10⁻¹/yr
 - SLOCA frequency : 3.40X10⁻⁴/yr
 - SGTR frequency : 4.50X10⁻³ /yr
- Vague Information

Measurement Node from Tech. Spec., PSA, IEEE

- $q_{av} = \frac{1}{2}\lambda\tau$ q_{av} : average unavailability τ : failure rate

 - λ : operating time

Unavailability of SG_LEV_SENSOR : 3.59X10⁻³

Deterministic Symptom Node

• RDT_PR : 1 (Increasing at SLOCA) /Discrete RVs

	States	λ	q _{av}
RDT_PR _SENSOR	Fail high	3.0X10 ⁻⁵	1.08X10 ⁻²
	Stuck at steady state	4.8X10 ⁻⁵	1.73X10 ⁻²
	Fail low	3.0X10 ⁻⁵	1.08X10 ⁻²
RDT_LEV _SENSOR	Fail high	5.1X10 ⁻⁵	1.84X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.60X10 ⁻³
	Fail low	5.1X10⁻⁵	1.84X10 ⁻²
RDT_TEMP _SENSOR	Fail high	1.9X10⁻⁵	6.84X10 ⁻³
	Stuck at steady state	3.5X10 ⁻⁵	1.26X10 ⁻²
	Fail low	1.9X10⁻⁵	6.84X10 ⁻³

	States	λ	q _{av}
SG_PR _SENSOR	Fail high	3.3X10⁻⁵	1.18X10 ⁻²
	Stuck at steady state	4.8X10 ⁻⁵	1.71X10 ⁻²
	Fail low	3.3X10 ⁻⁵	1.18X10 ⁻²
SG_LEV _SENSOR	Fail high	5.1X10⁻⁵	1.82X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10 ⁻⁵	1.82X10 ⁻²
SG_RAD _SENSOR	Fail high	5.1X10⁻⁵	1.82X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10⁻⁵	1.82X10 ⁻²
RWT_LEV _SENSOR	Fail high	5.1X10 ⁻⁵	1.82X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10 ⁻⁵	1.82X10 ⁻²

	States	λ	q _{av}
CONT_PR _SENSOR	Fail high	3.3X10 ⁻⁵	1.18X10 ⁻²
	Stuck at steady state	4.8X10 ⁻⁵	1.71X10 ⁻²
	Fail low	3.3X10⁻⁵	1.18X10 ⁻²
CONT _MOIST _SENSOR	Fail high	5.1X10 ⁻⁵	1.82X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10⁻⁵	1.82X10 ⁻²
CONT_RAD _SENSOR	Fail high	5.1X10 ⁻⁵	1.82X10 ⁻²
	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10 ⁻⁵	1.82X10 ⁻²
PRZ_PR _SENSOR	Fail high	3.3X10 ⁻⁵	1.18X10 ⁻²
	Stuck at steady state	4.8X10 ⁻⁵	1.71X10 ⁻²
	Fail low	3.3X10 ⁻⁵	1.18X10 ⁻²

19

	States	λ	q _{av}
	Fail high	5.1X10 ⁻⁵	1.82X10 ⁻²
PRZ_LEV _SENSOR	Stuck at steady state	1.0X10 ⁻⁵	3.59X10 ⁻³
	Fail low	5.1X10 ⁻⁵	1.82X10 ⁻²

Deterministic RVs of Symptom Nodes

1. RDT_LEV Node

	RDT_LEV	RDT_LEV		
	_SENSOR	Increasing	No change	Decreasing
Normal operation	Normal operation	0.0	1.0	0.0
	Fail high	1.0	0.0	0.0
	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0
SLOCA	Normal operation	1.0	0.0	0
	Fail high	1.0	0.0	0.0
	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0
SGTR	Normal operation	0.0	1.0	0.0
	Fail high	1.0	0.0	0.0
	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0

Deterministic RVs of Symptom Nodes

2. MSL_RAD Node

	MSL_RAD	MSL_RAD		
	_SENSOR	Increasing	No change	Decreasing
	Normal operation	0.0	1.0	0.0
Normal	Fail high	1.0	0.0	0.0
operation	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0
SLOCA	Normal operation	0.0	1.0	0.0
	Fail high	1.0	0.0	0.0
	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0
SGTR	Normal operation	1.0	0.0	0.0
	Fail high	1.0	0.0	0.0
	Stuck at steady state	0.0	1.0	0.0
	Fail low	0.0	0.0	1.0

- Application of Influence Diagrams model
 - Quantitative and probabilistic diagnosis using
 - symptoms given after reactor trip
 - Accidents : SLOCA, SGTRs
 - Evidences : PRZ_PR decrease (Common symptom)
 RDT_LEV decrease (SLOCA symptom)
 MSL_RAD decrease (SGTRs symptom)

• Evidence : PRZ_PR (Pressurizer Pressure) decrease

• Evidence : PRZ_PR decrease & RDT_LEV increase

• Evidence : PRZ_PR decrease & MSL_RAD increase

• Evidence : PRZ_PR decrease & RDT_LEV increase& MSL_RAD increase

Concluding Remarks

- Based on EOPs, a quantitative diagnosis algorithm using bayesian Theorem has been developed.
- Applications to other accident diagnosis with confusing symptoms are possible.
- This work can be used for safety enhancement by reducing human errors associated with accident diagnosis.
- It is shown that bayesian theorems are useful tool to help operators diagnosis correctly in a given short time.

Thank you.