Degradation Analysis and Risk-Informed Management of Feedwater System in Nuclear Power Plants

This research is supported jointly by the National Science Council and the Atomic Energy Council (through Institute of Nuclear Energy Research) of Taiwan

Contents

- Degradation or Aging Mechanisms of Feedwater Heaters
- Formulas for Prediction Degradation Rate of Heater-Wall
- Probabilistic Analysis of Individual Feedwater Heaters
- Risk Ranking of Components of a Feedwater System

Degradation Phenomenon of Feedwater Heaters

Flow Accelerated Corrosion (FAC) at the Steam Inlet of Heater (Reflected Steam Impact from Buffering Plate)

Aging Mechanism

Two–Phase FAC

NDT Examination of Heaters: Point-by-Point Method

Examination Grids:

Divide the Shell Side of Steam Inlet to L1, L2, R1 and R2 Areas

3-inch-long Grids expanded to twice the diameter of inlet tube at both sides

Code-Based Safety Assessment

Make Required Repair according to ASME B & PV Sec VIII, Division 1 UG-27& Suggestions made by EPRI

基本資料

測件名稱 材質 管徑 公稱壁厚 最小壁厚 蒸汽乾度 殼側薄化率(mil/yr) 殼側本體	FW-LP3A-L1 SA-515-70 63" 0.542" 0.492" 0.88	設計規範 設計壓力 設計溫度	ASME VIII 250 psi 405 °F
	3.0		

Wall-Thickness Required by ASME B & PV Sec VIII Division 1 UG-27

Present Research

To Replace the Deterministic Assessment by Risk-Based Assessment

To Reduce the Maintenance Cost through Risk-Based Management

Safety Factor-Based Assessment

Reliability-Based Assessment

Incorporating Aging Mechanism into QRA

FAC Empirical Models

1. KWU/KR Model: Siemens Co. & WATHEC Software Package

2. ERPI-CH Model: EPRI & CHECWORKS Software Package (not released to public)

3. BRT-Cicero Model: Electricite de France by Cicero Test Loop (not released to public)

KWU Single-Phase FAC Empirical Model

$$\Delta \phi_R = 6.35k_c \left(B \cdot e^{N \cdot W} \left[1 - 0.75 \cdot (pH - 7)^2 \right] \cdot 1.8 \cdot e^{-0.118g} + 1 \right) \cdot f(t)$$

 $B = -10.5\sqrt{h} - (9.375 \times 10^{-4}T^{2}) + 0.79T - 132.5$ $N = -0.0875h - (1.275 \times 10^{-5}T^{2}) + (1.078 \times 10^{-2}T) - 2.15$ $f(t) = 0.9999934 - 3.356901 \times 10^{-7}t - 5.624812 \times 10^{-11}t^{2} + 3.849972 \times 10^{-16}t^{3}$

 $\Delta \phi_{R} = \text{FAC rate } (\mu \text{ g/cm}^{2}\text{h})$ $k_{c} = \text{geometric factor } (0.8 \text{ for "T" junction})$ W = fluid velocity (m/s) pH = pH value $g = \text{ oxygen content } (\mu \text{ g/kg})$ h = Cr and Mo in steel (0% for SA515-70) $T = \text{ temperature } (^{\circ}\text{K})$ t = exposure time (1.5 yr=13140 hrs per EOC)

KWU Two-Phase FAC Empirical Model

Parameter Sensitivity Analysis

$\mathrm{KWU} = f(pH, g, T, W, x_{st})$

Monte Carlo Simulation of FAC Rate

Parameter	Symbol	Mean value	Standard deviation	Distribution	
Temperature (°F)	Т	405	40.5	Normal	
Exposure time (hr)	t	13140	N/A	Point estimate	
Oxygen content (ppb)	8	30	3	Normal	
Water chemistry (pH)	pH	7	0.7	Normal	
Steam quality	X_{st}	0.88	N/A	Point estimate	
Piping geometry	k_c	0.8	N/A	Point estimate	
Cr + Mo in %	h	0	N/A	Point estimate	
Fluid velocity (ft/s)	W	13.2	13.2	Normal	

Distribution of Thinning Rate

Goodness-of-Fit Test

飼水加熱器	量测最小壁厚(in)(發生格點)	容許薄化量(in)
HP1A	0.873 (L1, K7)	0.226
HP1B	0.860 (L1, L5)	0.213
LP3A	(0.496 (D1, I15)	0.094
LP3B	0.557 (R1, D7)	0.155
LP4A	0.357 (R1, K12)	0.194
LP4B	0.414 (R1, K6)	0.252
LP5A	0.378 (R1, H8)	0.296
LP5B	0.341 (R1, K13)	0.259
LP6A	0.379 (L1, C2; R2)	0.292
LP6B	0.343 (L1, N2)	0.256

Random-Fixed Reliability Model

	HP1A/1B	LP3A/3B	LP4A/4B	LP5A/5B	LP6A/6B
設計壓力(psi)	400	250	100	50	50
壓力容器內徑(in)	62	62	63	64	68
最大容許應力(psi)	17500	17500	17500	17500	17500
熔接效率	1	4	1	1	1
最小要求壁厚(in)	0.6466	0.4020	0.1625	0.0824	0.0876
	(C)		0		
		é			
		()			

Reliability-Based Aging Assessment

Risk Metric & Importance Measures

Risk Metric: A Function of Frequencies of Initiating Events & Conditional Probabilities of Failure Modes of SSCs

 $R = h(f_{\text{IE}i}, q_j)$

(i) FV IM: Focus on Weight of Failure of Cutsets containing BE_i

(ii) **RAW IM:** Focus on Weight (Increase) of Risk owing to BEj

$$\mathrm{RAW}(q_j) = \frac{R_j^+}{R_o}$$

(iii) Differential IM (DIM): Focus on Risk Change due to Variation of BEj (Borgonovo & Apostolakis, 2001)

Case Study: PRA of a BWR Feedwater System

Fault Tree Analysis

Operational Conditions (by assumption):

FWH	Design pressure (psi)	Design temperature (F)	Fluid velocity (ft/s)	Oxygen Content (ppb)	Water chemistry (pH)	Steam quality (%)	T∟(in)	Wall thickness detected at EOC17 (in)
HP1A	400	475	24.5	35	7	94	0.646	0.873
HP1B	400	475	24.5	35	7	94	0.646	0.860
LP2A	250 405		13.2	30	7	88	0.402	0.496
LP2B	250	405	13.2	30	7	88	0.402	0.557
LP3A	100	350	142	25	7	99.9	0.162	0.357
LP3B	100	350	142	25	7	99.9	0.162	0.414
LP4A	50	300	15	22	7	98	0.082	0.378
LP48	50	300	15	22	7	98	0.082	0.341
LP5A	50	300	18.8	22	7	85.5	0.087	0.379
LP5B	50	300	18.8	22	7	85.5	0.087	0.343
LP6A	50	280	18	20	7	90	0.090	0.394
LP6B	50	280	18	20	7	90	0.090	0.415

Numerical Analysis

Component	Event (number)	EOC18	EOC19	EOC20	EOC21	EOC22	EOC23	EOC24	EOC25	EOC26	EOC27	EOC28
FP	FP (1)	0.00164	0.00329	0.00493	0.00657	0.00821	0.00985	0.01148	0.01311	0.01474	0.01636	0.01798
CD	CD (2)	0.00284	0.00568	0.00851	0.01133	0.01414	0.01695	0.01975	0.02254	0.02532	0.02809	0.03086
HP1A	1A (3)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00003
HP1B	1B (4)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00007
LP2A	2A (5)	0.00000	0.00000	0.00001	0.00081	0.00158	0.02170	0.06964	0.11588	0.22303	0.40626	0.58786
LP2B	2B (6)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00017	0.0013	0.00261	0.00850	0.02750	0.06327
LP3A	3A(7)	0.00000	0.00000	0.00003	0.00004	0.00053	0.00643	0.01413	0.03934	0.12429	0.28980	0.44601
LP3B	3B (8)	0.00000	0.00000	0.00000	0.00000	0.00001	0.00038	0.00085	0.00425	0.02676	0.06614	0.12067
LP4A	4A (9)	0.00000	0.00000	0.00001	0.00003	0.00024	0.00374	0.01595	0.03450	0.11722	0.22576	0.36817
LP48	4B (10)	0.00000	0.00000	0.00006	0.00019	0.00143	0.01387	0.04312	0.10141	0.23916	0.39379	0.55409
LP5A	5A (11)	0.00000	0.00000	0.00001	0.00051	0.00406	0.01360	0.02402	0.09770	0.21715	0.34879	0.64884
LP5B	5B (12)	0.00000	0.00000	0.00005	0.00235	0.01404	0.04104	0.06792	0.20599	0.34911	0.51261	0.79728
LP6A	6A (13)	0.00000	0.00000	0.00007	0.00326	0.00997	0.02537	0.05339	0.15336	0.38959	0.60311	0.81711
LP6B	6B (14)	0.00000	0.00000	0.00000	0.00165	0.00506	0.01414	0.03019	0.10136	0.30057	0.51230	0.74784
CC	CC (15)	0.00434	0.00866	0.01296	0.01724	0.02151	0.02576	0.02999	0.03420	0.03839	0.04256	0.04672

Failure Probability of Series Systems:

 $F_{series} = 1 - (1 - q_1)(1 - q_2)...(1 - q_n)$

Failure Probability of Parallel Systems:

 $F_{parallel} = q_1 q_2 \dots q_n$

Feedwater Pumps

 $F_{FP} = q_1$

Condenser & De-Mining Units

 $F_{CD} = q_2$ **High-Pressure FW Heaters**

Low-Pressure FW Heaters

 $F_{HP} = q_3 q_4$

 $F_{LP} = [1 - (1 - q_5)(1 - q_7)(1 - q_9)(1 - q_{11})(1 - q_{13})][1 - (1 - q_6)(1 - q_8)(1 - q_{10})(1 - q_{12})(1 - q_{14})]$ Hot Well & Pump of Main Condensers

Risk Metric of Feedwater System

$$\begin{split} R(q_{j}) &= 1 - (1 - F_{FP})(1 - F_{CD})(1 - F_{LP})(1 - F_{HP})(1 - F_{CC}) \\ &= F_{LP} + F_{HP} - F_{LP}F_{HP} + F_{FP} - F_{FP}F_{LP} - F_{FP}F_{HP} + F_{FP}F_{LP}F_{HP} \\ &+ F_{CD} - F_{CD}F_{LP} - F_{CD}F_{HP} + F_{CD}F_{LP}F_{HP} - F_{FP}F_{CD} + F_{FP}F_{CD}F_{LP} \\ &+ F_{FP}F_{CD}F_{HP} - F_{FP}F_{CD}F_{LP}F_{HP} + F_{CC} - F_{LP}F_{CC} - F_{HP}F_{CC} \\ &+ F_{LP}F_{HP}F_{CC} - F_{FP}F_{CC} + F_{FP}F_{LP}F_{CC} + F_{FP}F_{HP}F_{CC} - F_{FP}F_{LP}F_{HP}F_{CC} \\ &- F_{CD}F_{CC} + F_{CD}F_{LP}F_{CC} + F_{CD}F_{HP}F_{CC} - F_{CD}F_{LP}F_{HP}F_{CC} + F_{FP}F_{CD}F_{LP}F_{LP}F_{CC} \\ &- F_{FP}F_{CD}F_{LP}F_{CC} - F_{FP}F_{CD}F_{HP}F_{CC} + F_{FP}F_{CD}F_{LP}F_{HP}F_{CC} \\ &- F_{FP}F_{CD}F_{LP}F_{CC} - F_{FP}F_{CD}F_{LP}F_{CC} + F_{FP}F_{CD}F_{LP}F_{P}F_{CD}F_{LP}F_{CC} \\ &- F_{FP}F_{CD}F_{LP}F_{CC} - F_{FP}F_{CD}F_{LP}F_{CC} + F_{FP}F_{CD}F_{LP}F_{CD}F_{LP}F_{CC} \\ &- F_{FP}F_{CD}F_{LP}F_{CC} - F_{FP}F_{CD}F_{LP}F_{CD}F_{LP}F_{CD}F_{LP}F_{LP}F_{CD}F_{LP}F_{CD}F_{LP}F_{CD}F_{LP}F_{CD}F_{LP}F_{CD}F_{LP}F_{LP}F_{CD}F_{LP}F_{LP}F_{CD}F_{LP}F_{LP}F_{LP}F_{CD}F_{LP$$

Example: LP2A at EOC 26 (assuming no repair)

$$\operatorname{RAW}(q_5) = \frac{q_5^+}{R(q_j)} = 1.3548$$

In $R(q_j)$, delete all terms not related to q_5 to obtain MCS containing BE₅

DIM H2

EOC18

DIM H1

Risk Rank by DIM H1

Risk Rank by DIM H2

Concluding Remarks

• KWU model predicts FAC of FWH well

 In studied case, FWHs at high-pressure section have lower risk ranks, and can be allowed for less intensive examination if so desired

 Those deserve more intensive examinations are LP6B \ LP6A \ LP5A \ LP5B \ LP4B

 As compared to RAW IM, FV IM & DIM are more effective to distinguish risk differences among components

- Although LP2A & LP3A locate close to high-pressure section, their risks are moderately high (owing to smaller allowable thicknesses) and need to be paid attention to
- The case study indicates a risk-based inspection plain or risk-based management program can be employed to replace the current code-based inspection program

Thank you for your attention.

The above viewpoints do not necessarily reflect those of AEC and NSC of Taiwan.