The introduction of the Weighted Risk Analysis

Dr. S.I. Suddle, M.Sc. (c.Eng.)

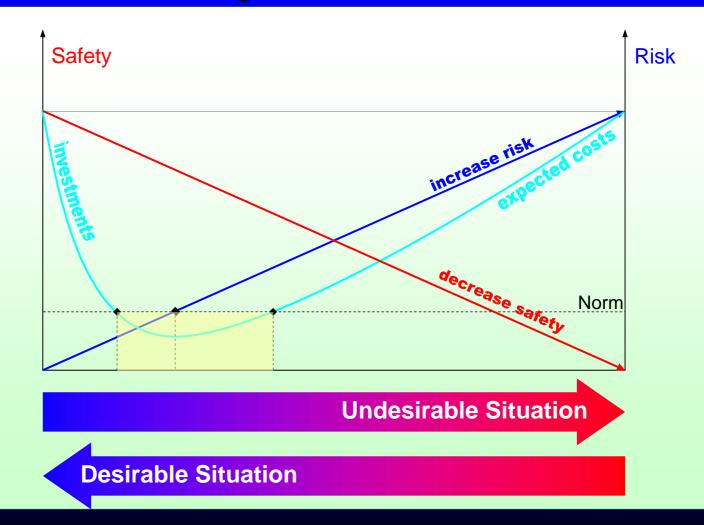
HKARMS 2005, 1 December 2005, Hong Kong

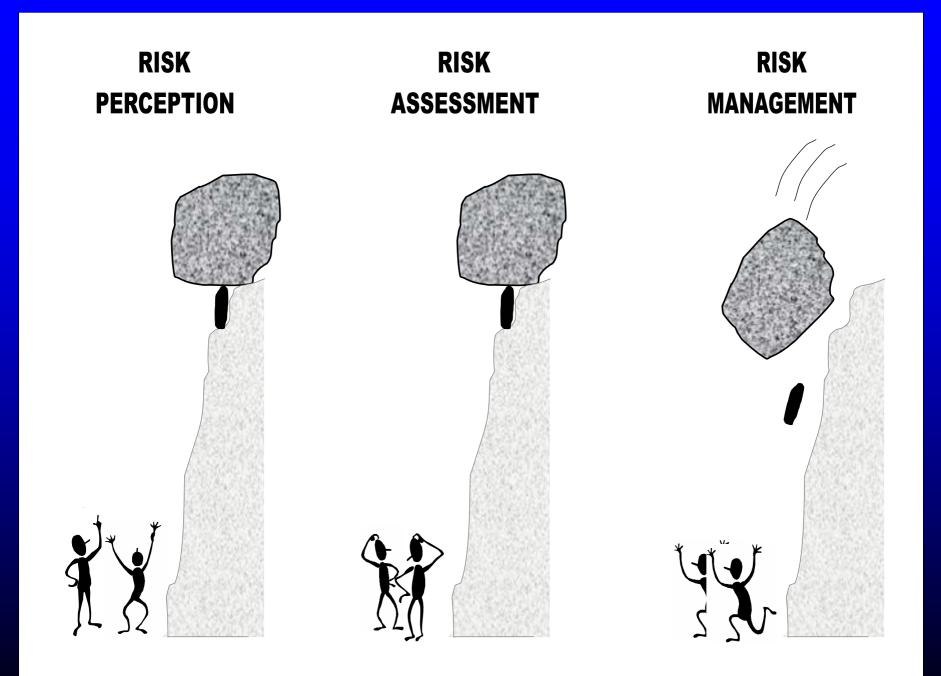
Contents

- Introduction
- Safety & Risk
- Comparison of Pshychological and Mathematical Defenitions (WRA)
- Case study Bos and Lommer
- Conclusions

Introduction

- Safety is a main item during the planning, realisation and management of large-scale projects
- Safety is a wide notion
 Psychological
 Social
 Risk
- Desicion-making is complex → human risks vs economical risks


Subdivision of safety


Safety					
Social Safety	Physical Safety				
Crime incentive factors	Natural & Man-made hazards				
Spatial factors Institutional factors Social factors	<i>Internal</i> Users Passengers Personnel	<i>External</i> Third parties			

Aspects of irrational behaviours

	Subjective Safe	Subjective unsafe
Objective safe	Healthy unconcern	Paranoia
Objective unsafe	Naivety	Healthy anxiety

Safety versus Risk

Definition Risk

RISK= PROBABLITY x (NEG) CONSEQUENCES

But.. Psychology [Prof. Vlek]:

RISK= LACK OF PERCIEVED CONTROLLABILITY

Formal definitions of risk or riskiness

- 1. Probability of undesired consequence.
- 2. Seriousness of (maximum) possible undesired consequence.
- 3. Multi-attribute weighted sum of components of possible undesired consequence.
- 4. Probability x seriousness of undesired consequence ("expected loss").
- 5. Probability-weighted sum of all possible undesired consequences ("average expected loss").
- 6. Fitted function through graph of points relating probability to extent of undesired consequences.
- 7. Semivariance of possible undesired consequences about their average.
- 8. Variance of all possible undesired consequences about mean consequences.
- 9. Weighted sum of expected value and variance of all possible consequences.
- 10. Weighted combination of various parameters of the probability distribution of all possible consequences (encompasses 8 en 9).
- 11. Weight of possible undesired consequences ("loss") relative to comparable possible desired consequences ("gain").

Basic dimensions underlying perceived riskiness

- 1. Potential degree of harm or fatality.
- 2. Physical extent of damage (area effected).
- 3. Social extent of damage (number of people involved).
- 4. Time distribution of damage (immediate and/or delayed effects).
- 5. Probability of undesired consequence.
- 6. Controllability (by self or trusted expert) of undesired consequences.
- 7. Experience with, familiarity, imaginability of consequences.
- 8. Voluntariness of exposure (freedom of choice).
- 9. Clarity, importance of expected benefits.
- 10. Social distribution of risks and benefits.
- 11. Harmful intentionality.

Comparison Mathematical and Psychological definitions of Risk

Risk [fatalities or money/year]

All possible scenarios

$$R = P_f \cdot C_f \implies R = \sum_{i=1}^{N} P_f \cdot C_f$$

$$R = \sum_{i=1}^{n} P(H_i) P(F \mid H_i) P(C \mid H_i \cap F)$$

$$R_w = \sum_{j=1} \alpha_j \sum_{i=1} P_f \cdot C_f$$

WEIGHTED RISK [year-1]

$$R_w = \sum_{j=1} \alpha_j \sum_{i=1} R_{ij}$$

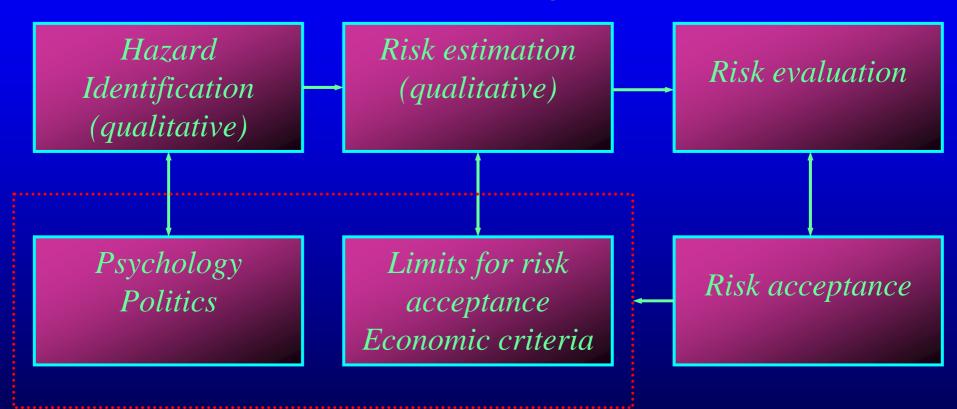
$$R_{w} = \alpha_{1} \sum_{i=1}^{k} R_{human,i} + \alpha_{2} \sum_{j=1}^{k} R_{enonomic,j} + \alpha_{3} \sum_{k=1}^{k} R_{environment,k} + \alpha_{4} \sum_{l=1}^{k} R_{quality,l} + \dots$$

Weighted Risk [year-1]

$$R_{w} = \alpha_{1} \sum_{i=1}^{k} R_{human,i} + \alpha_{2} \sum_{j=1}^{k} R_{enonomic,j} + \alpha_{3} \sum_{k=1}^{k} R_{environment,k} + \alpha_{4} \sum_{l=1}^{k} R_{quality,l} + \dots$$

 $\alpha_1 =$ (monetary) value per casualty or injury [-] $\alpha_2 =$ (monetary) value per environmental risk [-] $\alpha_3 =$ (monetary) value per economical risk [-] (mostly $\alpha_3 =$ 1) $\alpha_4 =$ (monetary) value per quality risk [-], and so on

$$\alpha_1 \sum_{i=1} R_{human,i} = \sum_{k=1} \alpha_{1k} \sum_{n=1} R_{human,nk}$$


 α_{1k} = monetary value per considered basic dimensions of underlying perceived riskiness [-]

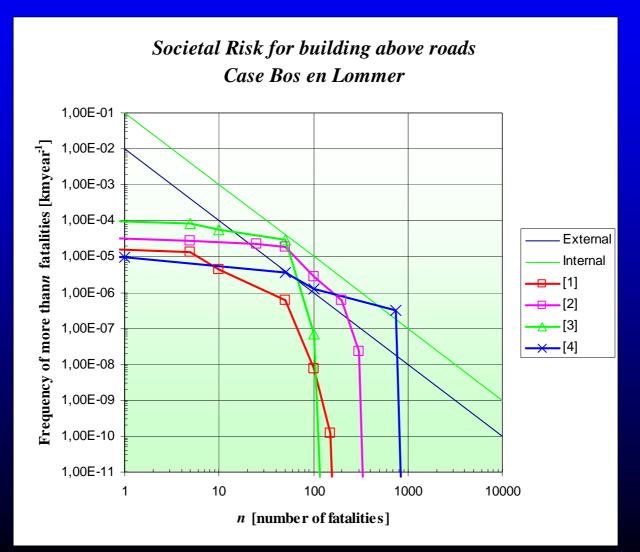
Monetary value per casualty

Theoretical Evaluations	Value for <i>α</i> [€ per person]
Human capital calculations	300,000
Willingness to pay (hypothetical)	1,600,000
Road Safety (UK, 1987)	500,000
Cost of medical procedures for comparison (real)	2,000 - 300,000

Voluntariness of an activity	Individual Risk [year-1]	Costs per life saved
1. Voluntary risk	10 ⁻³	€ 1,500,000
2. High degree of self-determination, direct individual benefit (car driving)	10-4	€ 6.000.000
3. Low degree of self-determination, individual benefit (working conditions)	5·10 ⁻⁵	€ 15.000.000
4. Involuntary, imposed risk exposition, no direct benefit (local resistance of dangerous installation)	10 ⁻⁵	€ 20.000.000

Risk analysis

minimise $C_{tot} = C_0(y) + \sum_{j=1}^n \frac{R_{wj}}{(1+r)^j}$



Input parameters for case Bos en Lommer

Characteristics of the road					
Type of road	3 x 2 lane motorway				
Number of vehicles passed per day	159,000				
Ratio of traffic type on the road	91% cars				
	8% truck traffic				
	1% busses				
Transport of hazardous materials	36,501 LF trucks				
per year	3,664 GF trucks				
Ratio transport of hazardous	0.122807 not hazardous traffic				
materials per year	0.729123 LF				
	0.14807 GF				
Covering length	79.5 m				
Frequency of an accident	$8.30 \cdot 10^{-8}$				
Maximum people in the covered	100				
infrastructure					
Characteristics of the l	puilding above the road				
Function of the building	Offices				
Floor space of the buildings	20,000 m ²				
Length of the building	79.5 m				
Width of the building	85 m				
Height of the building	20 m				
Maximum people in the building	800				
Characteristic	s of the vicinity				
Population density	50 persons/ha				

Safety Measures	(Sub)total Costs C_{tot} if _t $\alpha = \leq 0$	$E(N_d)$	Total Costs if _t $\alpha = \in 1,000,000$	Total Costs if _t $\alpha = \in 10,000,000$
0. Starting situation	€300	$4.2 \cdot 10^{-3}$	€4,500	€420·10 ³
1. Banning transport of LPG	€62,000,000	$2.9 \cdot 10^{-3}$	€62,002,900	€62·10 ⁶
2. Rerouting transport of LPG (not through urban areas)	€55,300	2.9·10 ⁻³	€58,200	€345·10 ³
3. Transport of LPG through pipelines	€62,500,300	2.9·10 ⁻³	€62,503,200	€63·10 ⁶
4. Transport of LPG takes place during the night	€1,062,300	2.9·10 ⁻³ - 4.2·10 ⁻³	€1,065,200	€1·10 ⁶

Safety Measures	Investments C _o	Economical risk C _i	Total costs C_{tot}	$E(N_d)$
0. Starting situation	-	€300	€300	$4.2 \cdot 10^{-3}$
5. Fire protection layer for building above infrastructure	€720,000	<€300	€33,750,000	2.9·10 ⁻³
6. Explosion resistant building above infrastructure	€11,000,000	<€300	€11,000,300	$2.9 \cdot 10^{-3}$
7. Building above infrastructure with small L/D	€5,316,000	<€300	€5,316,000	2.9·10 ⁻³
8. Fire protection layer for building above and in vicinity	€80,000,000	<€300	€80,000,300	$2.5 \cdot 10^{-3}$

Elements of the Weighted Risk <i>R</i> _w	Safety Measure								
for year 1	0 Starting situatio n	1 LPG Ban	2 Reroute LPG	3 LPG through pipe line	4 LPG during night	5 Fire prot. building	6 Expl. Resist. building	7 Small <i>L/D</i>	8 Fire prot. vicinity
Investments C_0	0	-	$5.5 \cdot 10^3$	$6.3 \cdot 10^7$	$1 \cdot 10^{6}$	$7.2 \cdot 10^5$	$1.1 \cdot 10^{7}$	$5.3 \cdot 10^{6}$	$8.0 \cdot 10^7$
Economical risk C_i	300	$6.2 \cdot 10^7$	300	300	300	300	300	300	300
Human risk $E(N_d) \cdot \alpha$	$2.9 \cdot 10^3$	$4.2 \cdot 10^3$	$2.9 \cdot 10^3$	$2.9 \cdot 10^3$	$4.2 \cdot 10^3$	$2.9 \cdot 10^3$	$2.9 \cdot 10^3$	$2.9 \cdot 10^3$	$2.5 \cdot 10^3$
Quality risk $R_{quality} \cdot \alpha_{quality}$	-8.10^4	-8·10 ⁴	-8.10^4	-8·10 ⁴	-8.10^4	-8.10^4	-8.10^4	-1.10^{5}	-8.10^4
Environmental risk $R_{env} \cdot \alpha_{environmental}$	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}	-1.10^{4}
Benefits	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}	-2.10^{6}
$R_w [\in year^{-1}]$	-2.10^{6}	6.0·10 ⁷	-2.10^{6}	$6.1 \cdot 10^{6}$	$-1.1 \cdot 10^{6}$	$-1.4 \cdot 10^{6}$	$8.9 \cdot 10^{6}$	$3.2 \cdot 10^{6}$	$7.8 \cdot 10^7$

Conclusions and discussion

- WRA → enables to quantify all risk elements with the monetary values
- Monetary values are sometimes difficult to estimate
- monetary value of human must be higher than the traditional € 1,000,000.=
- WRA is a rational tool for decision-making

QUESTIONS ?

