Lessons learned and risk management of JAXA

Asia-Pacific Conference on Risk Management and Safety

1, December 2005

Japan Space Exploration Agency Kazuyuki Tohara

Space Development

Communication

Manned activity

Space Activities

Earth observation

Science

Transportation

Characteristics of space development

Design conditions for satellites:
Space environments
Vacuum
Zero gravity
Electromagnetic energy: x-rays, ultraviolet, gamma rays etc.
Cosmic rays
Meteoroids
Temperature

Total weight: 4 ton
Mission time: 3-5 years
Altitude: 900km ALOS earth observation Satellites of JAXA

Characteristics of space development (continued)

Design conditions of **H-IIA launch vehicle**

Total weight: 285 ton
(ref. Toyota Lexus, 1.8 ton)
Mission time: 50~100min.

 Engine Power:3MHP (ref. Toyota Lexus, 206HP)
 Fuel Liquid Oxygen, and liquid Hydrogen H-IIA Launch vehicle

Risk management

The words risk derives from the early Italian **risicare**, which means "to dare." In this sense, risk is a choice rather than a fate.

Peter Bernstein

Space development and Risk management

Space activities have been built on <u>tremendous numbers of</u> <u>failures</u> in the past.

Since space environments are very difficult to simulate on the ground, or space vehicles need very massive power to escape from the earth, space engineers have been solving "<u>Unknown</u>" technical factors derived from many analyses of the causes of failures.

Space developments have confronted enormous "<u>Risks</u>", space communities have been refining their technical and managerial processes in developments to conquer these risks.

Risk management is the essential part of these activities.

Definition of "Risk and Risk management"

NASA defines "Risk".

The combination of the **probability** that a program or project will experience an undesired event (some examples include a cost overrun, schedule slippage, safety mishap, health problem, malicious activities, environmental impact, failure to achieve a needed scientific or technological breakthrough or mission success criteria) and the **consequences**, impact, or severity of the undesired event, were it to occur. Both the probability and consequences may have associated uncertainties".

Also they define "Risk Management.

An organized, systematic **decision making process** that efficiently identifies, analyzes, plans, tracks, controls, communicates, and documents risk to increase the likelihood of achieving program/project goals"

Space Shuttle Challenger STS 51-L 28 January 1986

Small fire from Solid Rocket Booster

http://images.jsc.nasa.gov/iams/images/pao/STSL/10062366.jpg

17 years later tragedy occurred again on STS-107 Columbia.

Risk management for space shuttle might have some fault

STS-114 had to wait 2.5 years to launch

Risk based approach

Current approach :

Do at first, if it fails then think how to treat these failures. Program/Project may stop for a while.

If you wish never to fail a program/project, your approach have to differ from usual.

Risk based approach :

Think at first, expecting some failures may happen and preparing for next steps to deal these failures, then do. Program/Project may not stop

But many time unexpected failures will occur by the "Unknown" causes. How to conquer "Unknowns" is big issue in space development

Failures of launch vehicles

February 1998 H-2 F5 GTO

<u>Cause:</u> Hot gas leaked from combustion chamber burned wire of fuel valve at 2nd stage engine November 1999 H-2 F8 GTO

<u>Cause:</u> Turbo pump was broken by cavitations at 1st stage engine November 2003 H-2A F6 LEO

<u>Cause:</u> Under investigation

JAXA

Failures of Satellites

<u>August 1994</u> ETS-6 Geostationary Orbit

<u>Cause:</u> Stick in propulsion valve of Apogee engine <u>June 1997</u> ADEOS Low Earth Orbit

<u>Cause:</u> Under estimation of thermal expansivity of laminate film at low temperature of solar paddle cause fatigue at Tension control October 2003 ADEOS-2 Low Earth Orbit

<u>Cause:</u> Under investigation

JAXA

NASDA

Conceptual risk management flow of JAXA

Define success criteria of the project

Organize program/project team and risk management structure

Describe program/project plan and risk management policy

Allocate resources to achieve success criteria

Implement a program/project

Identify and evaluate risks, plan measures to them

Take measures to risks as planned

Monitor the results of the measures

Revise program/project plan and risk management status

Make lessons learned

Iterate this process

Project activity is a commitment of Project manager to the top management

The Risk Exposure Calculator

This calculator evaluates "pressure" to project manager

Growth	Pressure for performance	+	Rate of expansion	+	Inexperience of key employees	= Score
Culture	Rewards for entrepreneurial risk-taking	+	Executive resistance to bad news	+	Level of internal competition	= Score
Information management	Transaction complexity and velocity performance	+	Gaps in diagnostic performance measure	+	Degree of decentralized decision making	= Score
Score 5 if high, 1 if low Total Score =						e =
SafeCautious		_		Urgent		
9-20 point		21-34 point		35-45 point		

Robert. L. Simons, "Performance measurement & control systems for implementing strategy", Prentice Hall, 1999

Risk management hierarchy

Risk management is a tool for a person who will announce success or fail to mass media.

Each level have to implement risk management and communicate with their risks

Conditions of successful program/project activities

Provide refined scenario to win, and understandable strategy
Sufficient environments to support program/project activity
Adequate resources such as budget, schedule, staff, facility etc.
Team of an experienced leader and well motivated staffs
All employee share the mind not to fail mission

Approach to deal "Technical risks"

Robustness will be achieved by using technologies which have enough maturity
Keep to use same model and improve them -KAIZENKeep the way of "Test as fly and Fly as test"
Sharpen the sensibility to perceive "Risks" and re-evaluate the verification process and data

Requirements for Risk Management

The concept of risk management flow is very simple, <u>however, it is very difficult to embody this concept into the</u> <u>concrete activities.</u>

Organizations have to <u>digest this concept and re-integrate</u> <u>everyday works into a systematic framework from</u> <u>the view points of risk management</u>.

So many organizations might not reach to this point.

To construct an effective risk management requires,

- Strong intention of the top management to prevent failures
- <u>Independent assessment to report objective news directly</u> <u>to the top management</u>
- Providing verified tools to perceive risks beforehand
 - **Training of all employees to communicate their risks in the organization**

Lessons learned

NASA defines "Lessons learned;

the significant knowledge or understanding gained through past or current programs and projects that is <u>documented</u> and collected to benefit current and future programs and projects".

Tohara propose,

"Lessons Learned" are substantial knowledge that are extracted from well planned successes or past bitter experiences. Lessons learned are typical examples that show us, what were bad points at planning or decision making. It is instructive to know how failures occurred and how countermeasures to the troubles were taken effectively. In most cases, causes of failures were not simple, many factors were tangling. It is very important to analyze the causes from both managerial and technical aspects.

H-II Flight 8 Launch from Tanegashima Space Center on 15th Nov. 1999

Salvaged the 1st stage engine of H-II F8 from the pacific ocean

Communication between senior and young people

20 years ago

Senior people preferred to communicate with young generation by drinking after office hour. There was discussion between them.

Nowadays

Space system and management became very complex, and every person are very busy, so they have no time to practice old way. Also young generation are smarter than 20 years ago, they prefer to communicate with senior people not by drinking, but lecture style or on the web information.

But essential problem is common to today and 20 years ago.

Senior people have to transfer their experience about past significant failures that shook the organization by their voice. It is their duty!

Category of lessons learned

a. <u>Lessons learned from personal experiences</u> Every person have some experience to transfer to young generation or new comers.

b. <u>Lessons learned from significant failures reports</u> Every mission failures or slightly succeeded mission have many thing to be analyzed into knowledge.

c. <u>Lessons learned from projects</u> Every project manager has to make Lessons learned to transfer their knowledge to followers.

d. <u>Lessons learned from oversea information</u> Failure report from oversea will teach us unexpected failure mode.

Lessons learned from projects

Recommended contents to project lessons learned

- 1. What project / subsystem manager planned to their project.
- 2. What kind of risk management they planned and implemented
- 3. What had happened in their project
- 4. How they overcame
- 5. Finally how much they could achieved their mission success criteria
- 6. What is their recommendation to following projects managers

Contents of significant failures reports

Work flow of significant failures records

Lessons learned from oversea failure reports

It is very interesting that, when JAXA have some failure, same failures had already happened or may happen in U.S. or Europe.

NASDA/JAXA had started to make summary of failure reports of oversea since 1996.

It is very instructive to analyze these failure modes.

Rule to collect and deploy Lessons learned

Lessons learned is "Inheritance of knowledge".

Technology is based on knowledge of predecessor, but young people never learn senior people's lessons, and tend to repeat same failures.

Nowadays, failures should be prevented because failure may affect life of organization . So lessons learned is vital reference for young generation to avoid fatal failures.

Organization has to provide a rule to collect and deploy "lessons learned" inside or outside of it.

TOYOTA motors way

After 7 months they launched new model into the market,

they have "Big Reflection conference"

All section managers related to the new model gather to

this conference and discuss what were their reflection in

this project and think how to upgrade their management way

Conclusion

Lessons Learned will teach us the weak points of current risk management. Risk management should be upgraded by lessons learned.

Thank you for your attention