### The MDTA Method for Analysing Diagnosis Failures in NPP Emergencies

APCRMS '05, Hong Kong Dec. 1-2, 2005

J.W. Kim, W. Jung, J. Ha (E-mail: jhkim4@kaeri.re.kr)

Integrated Safety Assessment Division Korea Atomic Energy Research Institute



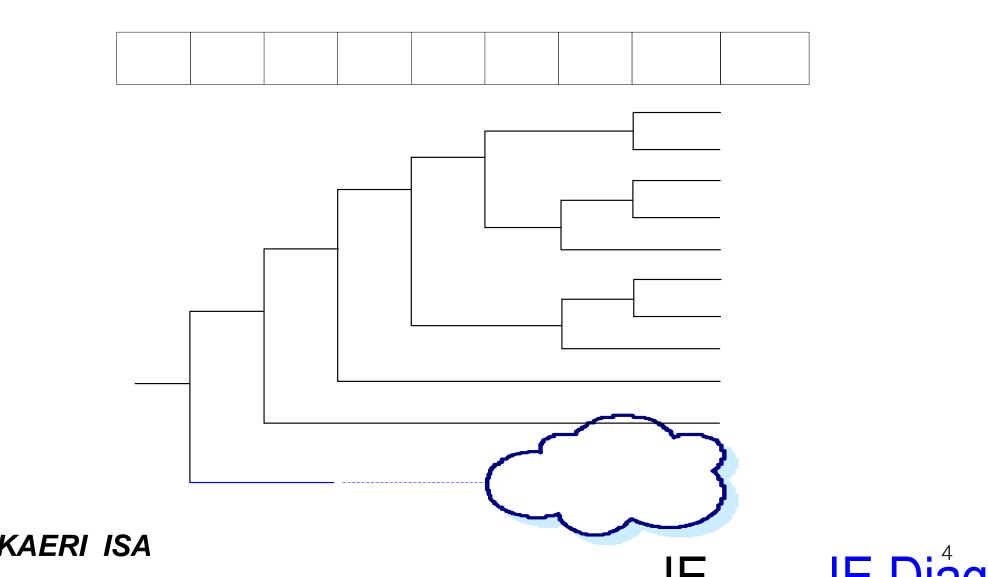
### Introduction (1) – event diagnosis

- Importance of Event Diagnosis
  - Diagnosis of an event (or events) is crucial for managing or controlling the plant to a safe and stable state.
  - Diagnosis failure (/misdiagnosis) of the event(s), if not recovered, can cause the operators' inappropriate actions, (e.g. TMI-2: PORV LOCA, Palo Verde 2: SGTR, Fort-Calhoun: PSV LOCA, UCN-4: SGTR, ...)

#### Status of HRA in Conventional PSA

- Diagnosis failure (/misdiagnosis) are not considered adequately in a current PSA/HRA (c.f. diagnosis error probability such as in THERP)
- Impacts of diagnosis failure on the operator actions such as errors of commission (EOC) are not modeled (Only errors of omission (EOO) are modeled).




### Introduction (2) –operating experience

| Events                       | Event Type                                     | Major Human Events                             | Human Failure Mechanisms & Context                                                                                                                                                                                                      |
|------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TMI-2<br>(1979)              | PORV LOCA<br>with Loss of<br>MFW               | Inappropriate<br>termination of HPSI<br>(EOC)  | • Diagnosis Failure :<br>-PORV stuck-open: PZR level high and rising<br>-PORV indicated CLOSED (design problem)<br>-Proc.: No direct guidance for PORV LOCA<br>-Train.: No training for PORV LOCA                                       |
| Fort<br>Calhoun<br>(1992)    | PSV LOCA<br>with Electrical<br>Fault           | Inappropriate<br>termination of HPSI<br>(EOC)  | <ul> <li>Potential for Diagnosis Failure</li> <li>RCS pressure indicator fails high -&gt; RCS sub-<br/>cooled margin (SCM) indicated sufficient</li> <li>Computer displays for RCS sub-cooling<br/>parameters malfunctioning</li> </ul> |
| Crystal<br>River 3<br>(1991) | Pressurizer<br>spray valve<br>failure to close | Bypassing of ESF/<br>Securing of HPSI<br>(EOC) | <ul> <li>Diagnosis Failure</li> <li>Fail to make a correct sit. ass. due to<br/>instrumentation failure</li> <li>Misdiagnosed the given symptoms</li> </ul>                                                                             |
| UCN 4<br>(2004)              | SGTR                                           | Reset of HPSI setpoint<br>(EOC)                | <ul> <li>Delayed Diagnosis &amp; Violation :</li> <li>-RCS pressure dropped rapidly;</li> <li>-Delayed response of radiation monitor (design problem)</li> </ul>                                                                        |





New event scenarios could be caused by diagnosis failures





 To suggest a method for assessing diagnosis failures and modeling human unsafe actions into a PSA model



# Model and Taxonomy (1) - contributing factors

#### [Operating Experience]

| Event        | Contributing Factors       | Error<br>Mechanism            |  |
|--------------|----------------------------|-------------------------------|--|
| TMI-2 (PORV  | PORV indication failure    | Diagnosis                     |  |
| LOCA)        | Delayed response of RDT    | Failure                       |  |
|              |                            | Potential for a Diag. Failure |  |
| Palo Verde 2 | Delayed radiation alarm on | Delayed                       |  |
| (SGTR)       | major detectors            | Diagnosis                     |  |
| UCN 4        | Delayed response of        | Delayed                       |  |
| (SGTR)       | radiation monitor          | Diagnosis                     |  |

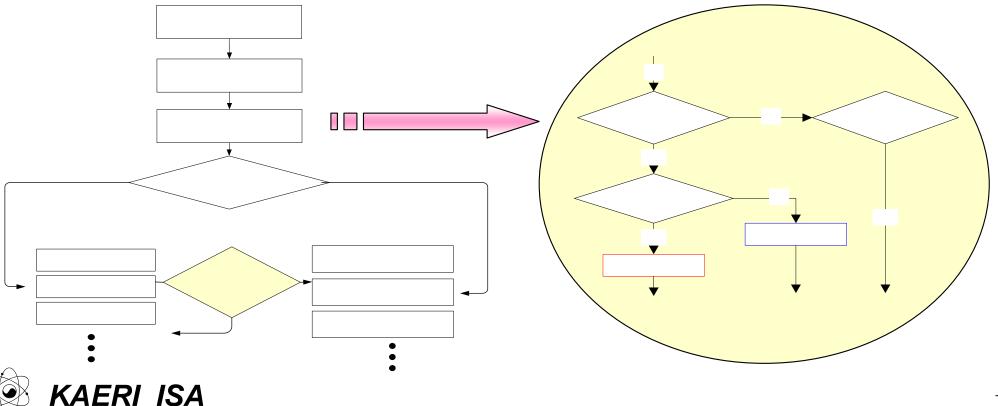
#### [Simulator Study]

| Event       | Contributing Factors                             | Error<br>Mechanism   |  |
|-------------|--------------------------------------------------|----------------------|--|
| SGTR -> GT  | Misunderstanding of the diagnostic step 14       | Diagnosis<br>Failure |  |
| SGTR -> FRP | N16 Radiation alarm disappeared during diagnosis | Diagnosis<br>Failure |  |
| LOCA ->ESDE | Procedural deficiency                            | Diagnosis<br>Failure |  |
| LOAF ->ESDE | Communication error, too early diagnosis         | Diagnosis<br>Failure |  |

#### [Categorizing Contributing Factors to Diagnosis Failures]

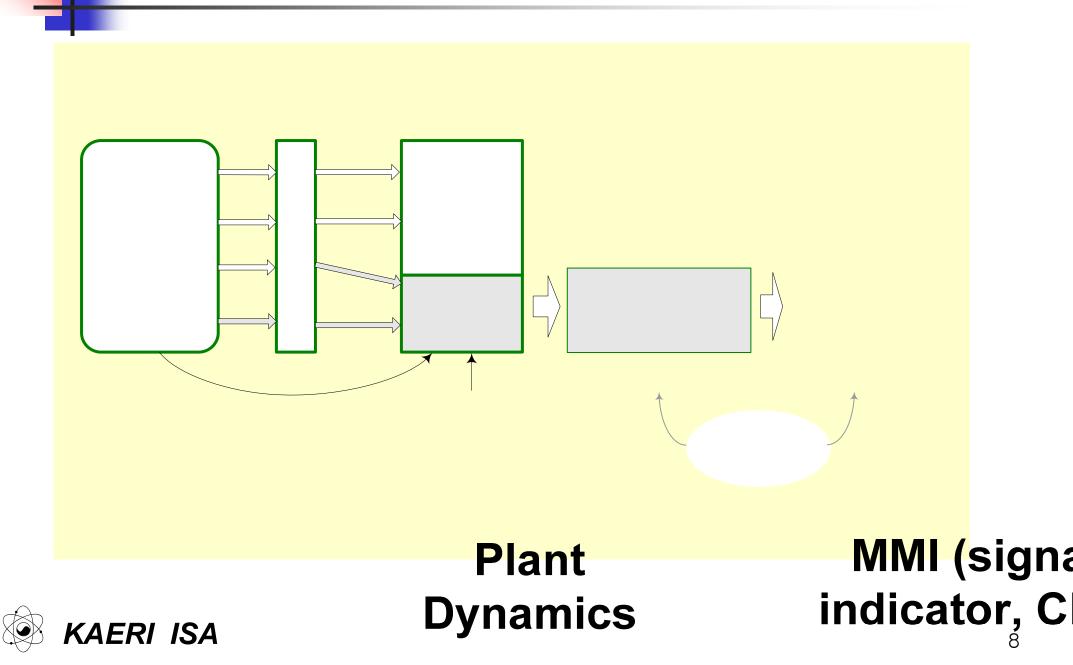
#### 1. Plant Dynamics (PD)

- Temporal Characteristics or Symptom masking due to plant dynamic behaviors
- 2. Operator Errors (OE)
  - Errors during information gathering or interpretation
- 3. Instrumentation Failure (IF)
  - Unavailability of the instrumentation system



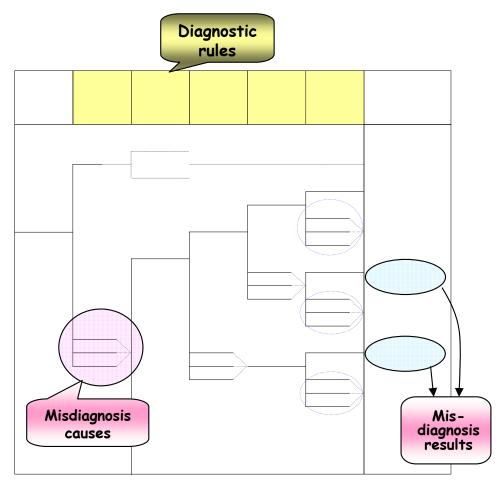



## Model and Taxonomy (2) - EOP structure


#### The EOP Structure of the KSNP

- The KSNP EOP structure follows the CE-type EOPs, in which an initial diagnosis, using the flowchart-based procedure, determines the response procedure.
- The initial diagnosis can only be altered (into FRP) through the safety function status checking.




## Model and Taxonomy (3)

for analysing diagnosis failures and their consequences



# Method

- Steps for Analysis
  - Step 1: Assessing the potential for diagnosis failures
  - Step 2: Identification of the human failure events (HFEs) from diagnosis failures
  - Step 3: Quantification of the HFEs
- Step 1: Assessing the potential for diagnosis failures
  - Using the MisDiagnosis Tree Analysis (MDTA) method
    - Construction based on the diagnostic rules of EOP
    - Application of three causes to each decision parameter:
      - Plant Dynamics (PD)
      - Operator Error (OE)
      - Instrumentation Failure (IF)
    - Final results: Diagnosis results including misdiagnosis events, and associated decision paths & causes





### Method-Step 1: Guidelines for Assessing the PD

#### Contribution of PD to Diagnosis Failures

 Fraction of an event spectrum where the behavior of a decision parameter does not match the established criteria of a decision rule, due to the plant dynamic features.

#### Steps for Analysing PD

- Step 1: Classification of an event into sub-groups
  - According to the characteristics of the plant behavior, e.g. the break location (or the failure modes) and the status of the required mitigative systems
- Step 2: I dentification of suspicious decision rules
- Step 3: Quantitative evaluation
  - Establish the range of an event spectrum that shows a mismatch with the established criteria of a decision parameter

#### <An Example of event classification for the SLOCA event>

| Event category<br>(e.g. break location) | Status of Mitigative Systems                                                                      |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| RCS pipeline LOCA                       | <ul> <li>2 trains of HPSI</li> <li>1 train of HPSI</li> <li>All trains in failed state</li> </ul> |  |  |
| PZR steam-space<br>LOCA                 | <ul> <li>2 trains of HPSI</li> <li>1 train of HPSI</li> <li>All trains in failed state</li> </ul> |  |  |



### Method-Step 1: Guidelines for Assessing the OE

- Contribution of OE to Diagnosis Failures
  - Selection of Influencing Factors: Errors during 'Information Gathering' and 'Rule Interpretation'
  - Assignment of error probabilities using Expert Judgment and the CBDTM [EPRI]

| Cognitive<br>function | Detailed items                                                                                            | Basic HEP                                                                                             |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Information           | Existence of confusing information                                                                        | BHEP = 1.0E-2                                                                                         |  |
| gathering             | Information on more than one object is required                                                           | BHEP = 1.0E-2                                                                                         |  |
| Rule interpretation   | Logic of a decision rule<br>- AND or OR<br>- NOT<br>- NOT & (AND or OR)<br>- AND & OR<br>- NOT & AND & OR | (CBDTM, $p_cg$ )<br>BHEP = 3.0E-4<br>BHEP = 2.0E-3<br>BHEP = 6.0E-3<br>BHEP = 1.0E-2<br>BHEP = 1.6E-2 |  |



### Method-Step 1: Guidelines for Assessing the IF

- Contribution of IF to Diagnosis Failures
  - A single channel failure is assumed to be identified by the MCR operators during normal and abnormal operations
  - Only the possibility of CCF during normal operation is considered
- Assessing the Contribution of IF

• 
$$Q_{CCF} = \beta * Q_T \cong \beta * (\frac{1}{2} \cdot \lambda \cdot T)$$

- $\beta$  : the Beta factor
- $\boldsymbol{\lambda}$  : The failure rate of the sensor and transmitter
  - (no data on the indicators)
- T: The test interval



## Method-Step 2: Identification of HFEs

#### Classification of Unsafe Actions (UAs)

- UA-1: Unsafe actions related to required functions
  - Failure to initiate required functions
  - Failure to maintain required functions
- UA-2: Unsafe actions related to unrequired or unnecessary functions
  - Manual initiation of unrequired functions

#### Steps for Identifying UAs and HFEs

- Step 1: Construction of a table of the required functions for both the actual event and the misdiagnosed event
- Step 2: Identification of UAs
  - For UA-1, Identify the essential functions for the actual event that are not those for the misdiagnosed event,
  - For UA-2, Identify the required functions that are not required by the actual event but are required by the misdiagnosed event

| Required functions                    |                       | Required functions |                         |  |
|---------------------------------------|-----------------------|--------------------|-------------------------|--|
| for SLOCA                             |                       | for ESDE           |                         |  |
| (the actual event)                    |                       | (the misdiagnosed) |                         |  |
| On the<br>PSA event<br>sequence       | A event EOP PSA event |                    | On the EOP<br>(ESDE)    |  |
| Reactor                               | Reactor               | Reactor            | Reactor trip            |  |
| trip                                  | trip                  | trip               |                         |  |
| HPSI                                  | HPSI                  | (None)             | HPSI                    |  |
| LPSI in<br>case of<br>HPSI<br>failure | (None)                | (None)             | (None)                  |  |
| (None)                                | Isolation<br>of LOCA  | (None)             | Isolation of faulted SG |  |
| RCS                                   | RCS                   | RCS                | RCS                     |  |
| cooldown                              | cooldown              | cooldown           | cooldown                |  |
| using SG                              | using SG              | using SG           | using SG                |  |
| RCS                                   | RCS                   | RCS                | RCS                     |  |
| cooldown                              | cooldown              | cooldown           | cooldown                |  |
| using SCS                             | using SCS             | using SCS          | using SCS               |  |



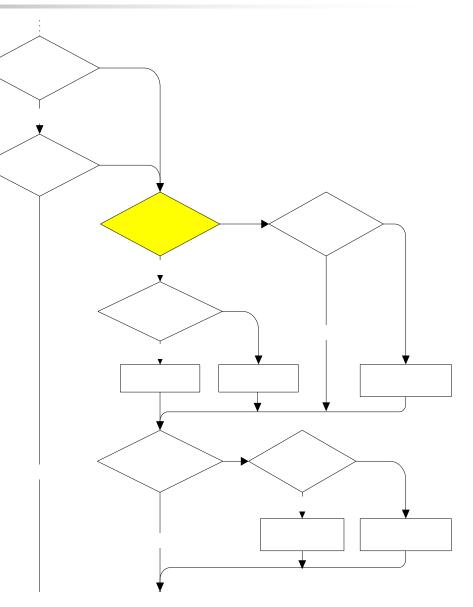
## Method-Step 3: Quantification of HFEs

- A Rough Quantification Scheme for Assessing a Risk Impact of Diagnosis Failures
  - Probability of a HFE = (Probability of a diagnosis failure) \* (Probability of an unsafe action under the diagnosis failure) \* (Probability of a nonrecovery)
  - Probability of a diagnosis failure: already given

#### Probability of an Unsafe Action

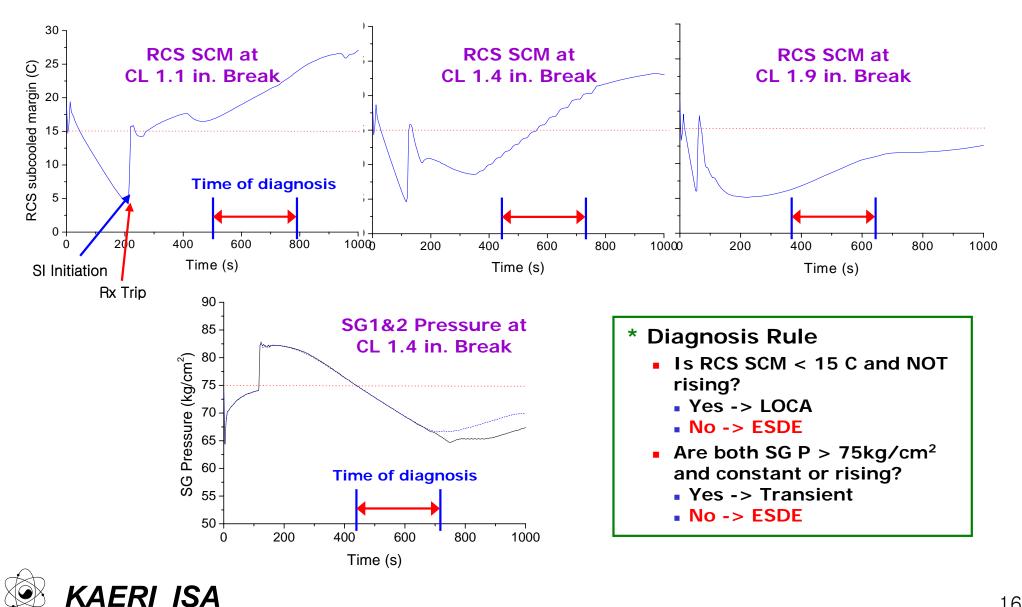
- In the case that there is no procedural rules for the actions: 1.0
- In the case that there are procedural rules for the actions:
  - Plant dynamics satisfy the procedural rules for committing UA: 1.0
  - Plant dynamics do not satisfy the procedural rules for committing UA: 0.1 ~ 0.05

#### Probability of a Non-recovery [adapted from CBDTM]


| Recovery Path (RP)                                                                 | Available time                                          | Probability of non-<br>recovery |
|------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|
| RP1: The procedural guidance on the recovery                                       | T <sub>a</sub> > 30 min                                 | 0.2                             |
| RP2: The independent checking<br>of the status of the critical<br>safety functions | 30 min < T <sub>a</sub> < 1 hr<br>T <sub>a</sub> > 1 hr | 0.2<br>0.1                      |



# Case Study for SLOCA (Step 1)


#### Analysing PD

- Generally, SLOCA can be categorized into the RCS pipeline LOCA and the Pzr steam space LOCA
- In this study, only the RCS pipeline LOCA is considered for an illustrative purpose
  - SLOCA Range: 0.38 in. ~ 1.91 in. (0.74 cm<sup>2</sup> ~ 18.58 cm<sup>2</sup>)
- Suspicious decision rules: the RCS subcooled margin (SCM)
- T/H analysis using the MARS code
  - Condition: All charging and Safety Injection systems are operating normally
- Results:
  - RCS SCM: In an increasing trend over the full range; 0.38 ~ 1.40 in. : > 15 °C (at the time of diagnosis)
  - SG Pressure: In a decreasing trend (a symptom of ESDE)



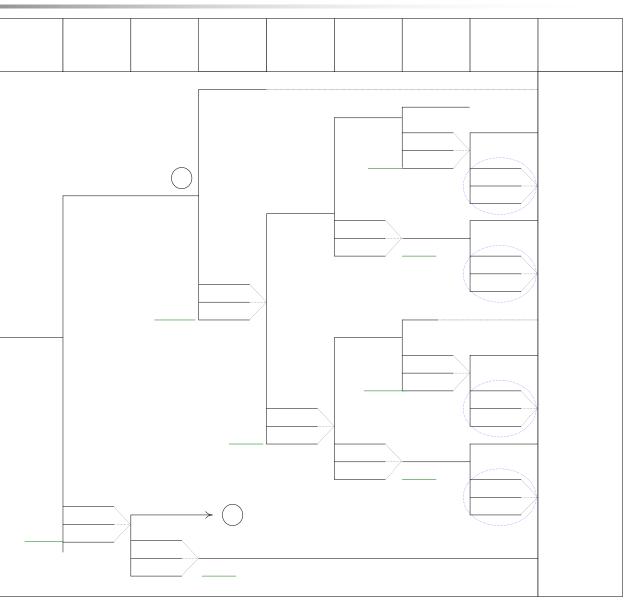


# Case Study for SLOCA (Step 1)



# Case Study for SLOCA (Step 1)

#### Analysing OE


 Error probabilities are assigned at each decision point

#### Analysing IF

| Instrument | Failure rates |          |
|------------|---------------|----------|
| Pressure   | 3.30e-07      | 2.14e-04 |
| Level      | 5.10e-07      | 3.31e-04 |
| Temp.      | 1.90e-06      | 1.23e-03 |
| Radiation  | 1.06e-05      | 3.82e-04 |

#### Diagnosis Failure Probabilities

- SLOCA->ESDE: 6.44E-03
- SLOCA->GTRN: 3.0E-05





# Case Study for SLOCA (Step 2)

#### Identification of HFEs

- Misdiagnosis as an ESDE
  - Premature termination of HPSI (EOC)
  - Failure to generate SIAS manually (EOO)
  - Failure to initiate an aggressive cooldown (EOO)
  - Isolation of the Intact SG (EOC)
- Misdiagnosis as an GTRN
  - Premature termination of HPSI (EOC)
  - Failure to generate SIAS manually (EOO)
  - Failure to initiate an aggressive cooldown (EOO)

| Required functions                    |                         | Required functions              |                         |  |
|---------------------------------------|-------------------------|---------------------------------|-------------------------|--|
| for SLOCA                             |                         | for ESDE                        |                         |  |
| (the actual event)                    |                         | (the misdiagnosed)              |                         |  |
| On the<br>PSA event<br>sequence       | On the<br>EOP<br>(LOCA) | On the<br>PSA event<br>sequence | On the EOP<br>(ESDE)    |  |
| Reactor                               | Reactor                 | Reactor                         | Reactor trip            |  |
| trip                                  | trip                    | trip                            |                         |  |
| HPSI                                  | HPSI                    | (None)                          | HPSI                    |  |
| LPSI in<br>case of<br>HPSI<br>failure | (None)                  | (None)                          | (None)                  |  |
| (None)                                | Isolation of LOCA       | (None)                          | Isolation of faulted SG |  |
| RCS                                   | RCS                     | RCS                             | RCS                     |  |
| cooldown                              | cooldown                | cooldown                        | cooldown                |  |
| using SG                              | using SG                | using SG                        | using SG                |  |
| RCS                                   | RCS                     | RCS                             | RCS                     |  |
| cooldown                              | cooldown                | cooldown                        | cooldown                |  |
| using SCS                             | using SCS               | using SCS                       | using SCS               |  |

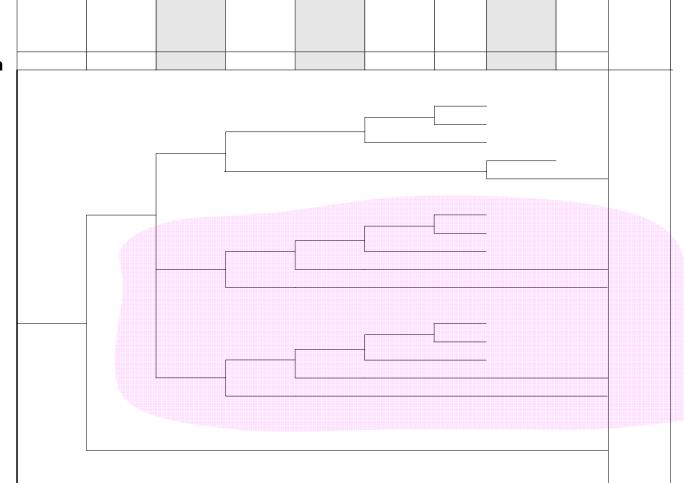


# Case Study for SLOCA (Step 3)

#### Quantification of HFEs

| Misdiagnosis     |                                         | Procedural<br>rules for<br>the action? | Plant<br>dynamics? | Recovery potential                   |                            | P(UA) <sup>1</sup> * |
|------------------|-----------------------------------------|----------------------------------------|--------------------|--------------------------------------|----------------------------|----------------------|
|                  | HFEs                                    |                                        |                    | Procedural<br>guidance?              | Indep't<br>checking        | $P(OR)^2$            |
| SLOCA -><br>ESDE | Premature<br>termination of HPSI        | Yes                                    | Yes                | Yes:<br>(T <sub>a</sub> > 30<br>min) | T <sub>a</sub> > 1 hr      | 2.0E-2               |
|                  | Failure to generate<br>SIAS manually    | Yes                                    | No                 | Yes<br>(T <sub>a</sub> > 30<br>min)  | T <sub>a</sub> > 1 hr      | 2.0E-3 ~<br>1.0E-3   |
|                  | Failure to initiate aggressive cooldown | No                                     | N/A                | No                                   | T <sub>a</sub> < 30<br>min | 1.0                  |
|                  | Isolation of the<br>Intact SG           | Yes                                    | No                 | No                                   | No                         | 0.1 ~ 0.05           |
| SLOCA -><br>GTRN | Premature<br>termination of HPSI        | Yes                                    | Yes                | Yes<br>(T <sub>a</sub> > 30<br>min)  | T <sub>a</sub> > 1 hr      | 2.0E-2               |
|                  | Failure to generate<br>SIAS manually    | Yes                                    | No                 | Yes<br>(T <sub>a</sub> > 30<br>min)  | T <sub>a</sub> > 1 hr      | 2.0E-3 ~<br>1.0E-3   |
|                  | Failure to initiate aggressive cooldown | No                                     | N/A                | No                                   | T <sub>a</sub> < 30<br>min | 1.0                  |

P(UA): Probability of performing an unsafe action under the diagnosis failure
 P(NR): Probability of non-recovery




# Case Study for SLOCA (Modeling into PSA)

- Modeling into PSA
  - Premature termination of HPSI (*ET*)
  - Failure to initiate an aggressive cooldown (ET)
  - Failure to generate SIAS manually (FT)
  - Isolation of the Intact SG (not modeled)
- Risk Impact of Diagnosis Failures
  - CDF of the misdiagnosis event sequences:

#### **4.0E-7**

(5.4% of total CDF)





### Conclusions

- The MDTA-based Method
  - An MDTA-based method for assessing the potential for diagnosis failures and their risk impacts was introduced.
  - The MDTA method is a structured one for identifying possible diagnosis paths and combinations of causes leading to misdiagnosis esp. for a flowchart-based diagnostic procedure
- Pilot Application to SLOCA
  - According to the pilot application to the SLOCA event, the risk impact of diagnosis failure seems not to be negligible
  - Effective measures need to be developed to reduce or eliminate the possibility of diagnosis failures, which may include a revision of the diagnostic procedure or training program

