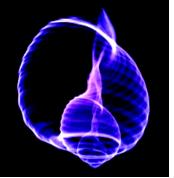

Occupational Chemical Exposure Management System


HKARMS 2005.12.02

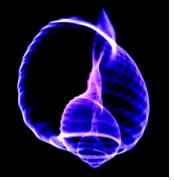
Jer-Pei Fong, Cheng-Chao Wu Taiwan



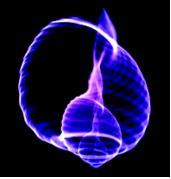
Background

- In Taiwan, every industrial factory was required to monitoring chemical exposure concentration at work place in half year by Occupational Safety and health Act.
- Exposure concentration data came from worker (personal monitoring) and work place (area monitoring)
- Almost 70 thousand data were received, and the total expense is4.5 million US \$ per year
- Government wish those data can help companies to prevent occupational disease happened, and reduce the higher exposure concentration after a regular periodical monitoring

But, Unfortunately ...


- It is difficult to administrate exposure date systematically in the general companies (workers number <300)
- Each certificated laboratory has their own report format.
 (paper document and digital file)
- Except fully satisfied with regular monitoring requirement, almost factories do not know how to work and applied those exposure data. Because of hygienists lack of statistic method, tools and skills

- "A Strategy for Assessing and Managing Occupational Exposures", AIHA, 1998
- Chapter 7: "Quantitative
 Exposure Data : Interpretation,
 Decision Making, and Statistical
 Tools"
- Easy tool, developed by MS-Excel VBA language


Data Description	:	
OEL 0.5 Sample Data (max n = 50) No kss-that €) 0.016 0.060 0.060 0.002 0.040 0.150	DESCRIPTIVE STATISTICS Number of samples (n) 13 Maximum (max) 0.2 Minimum (min) 0.002 Range 0.198 Percent above OEL (%>OEL) #REF! Mean 0.060 Standard deviation (\$) 0.070 Mean 0.080 Standard deviation (\$) 0.070 Wean 0.081 Standard deviation of logtransformed data (LN) -2.931 Std. deviation of logtransformed data (LN) 1.411 Geometric standard deviation (\$SD) 4.101	0.18 Sequential Data Plot 0.16 0.
0.159 0.200 0.156 0.150 0.059 0.059	TEST FOR DISTRIBUTION FIT W-test of logitansformed data (LN) 0.834 Lognormal (a = 0.05)? No W-test of data 0.871	0 2 4 sfmple Num8kr 10 12 14 Logprobability Plot and
0.007	Normal (a = 0.05)? Yes LOGNORMAL PARAMETRIC STATISTICS	Least-Squares Best-Fit Line
	Estimated Arithmetic Mean - MVUE 0.127 LCL.126% - Lands "Exact" 0.068 UCL_126% - Lands "Exact" 0.618 95th Percentile 0.544 Percent above OEL (%OEL) 5.641 LCL_126% NOEL 19.243 NORMAL PARAMETRIC STATISTICS 0.003 Mean 0.028 UCL_126% + statistics 0.028 UCL_126% + Statistics 0.228 Percent above OEL (%P-OEL) 0.000	
	- 99% - 98% - 98%	Idealized Lognormal Distribution

The Aims

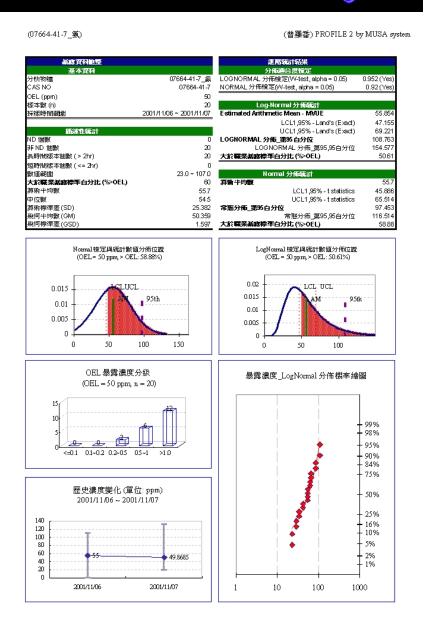
- Developed a statistic and management tool for easy to use
- Provide more valuable information to
 hygienists by systematically statistic work
 and automatically plotting make
- Increase more efficient to data collection

Material and Method

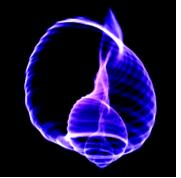
- Developed by Visual Basic (VB6)
- Database type: MS-Access
- Functions Design:
 - Data management
 - Data Statistic
 - Plotting
 - Analysis Report

			- K			
👿 PROFILE 2 授權給	:工研院_環安中心					
檔案 工具 篩選 説明	呜					
1 🔊 🔝		▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	• 🌌 統計			3
─查得6筆資料────		様品編號	分析編號	分析類別	分析項目	項目代碼
條件值: 查詢條件: 中英俗名		OBB	BB	有機	環己烷	00110-82-7
		O G901109	1.07.27	有機	二甲苯 (含鄰 間 對異構物)	01330-20-7
		O G901109		有機	二甲苯 (含鄰 間 對異構物)	01330-20-7
▶ 🔽 只顯示勾選項目		O G901109		有機	氨	07664-41-7
物種清單		O G901109		粉塵	第四種粉塵(呼吸性粉塵)	Particle4_Inh
		G901109	-	有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
項次物種代碼	中文名稱	🗘 G901109		有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
☑ 1 00067-63-0	異丙醇	G901109		有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
2 00067-64-1	丙酮	G 901109	-	有機	氨	07664-41-7
3 00068-12-2	N_N-二甲基甲醯胺	🚺 🚫 G901109	-	粉塵	第四種粉塵(呼吸性粉塵)	Particle4_Inh
☑ 4 00078-93-3	丁酮	G 901109	80 7 0	有機	醋酸	00064-19-7
5 00108-88-3	甲苯	G 901109	-	有機	醋酸	00064-19-7
፼6 00141-78-6	乙酸乙酯	G 901109		有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
Chemical Database		G 901109		有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
		G 901109	-	粉塵	第四種粉塵(呼吸性粉塵)	Particle4_Inh
		🚺 🗘 G901109	- 1	入有機	醋酸	00064-19-7
		O G901109	- /	有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
		ØG901109	- /	有機	二甲苯 (含鄰_間_對異構物)	01330-20-7
-	to Link	G 901109	-/	有機	氨	07664-41-7
Data List –		C001109	15.	有機	氨	07664-41-7
		G901109	-	有機	氨	07664-41-7

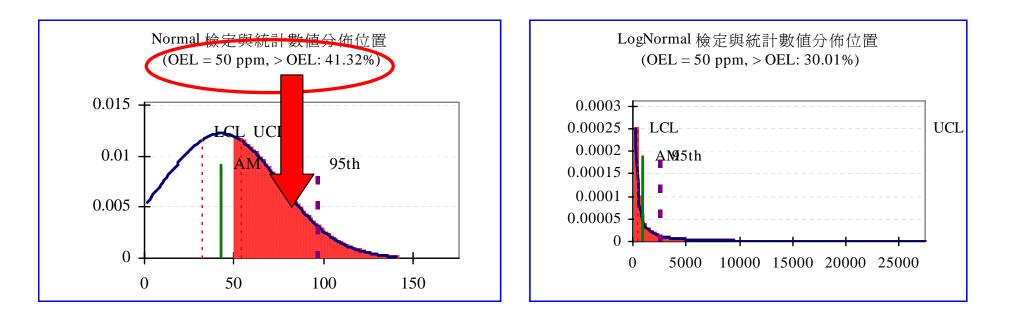
The Advantage in e-Management

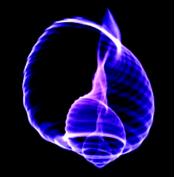

Power Search and Group Setting

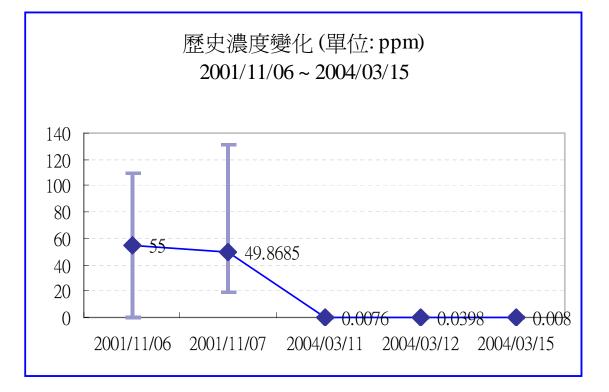
- Search method is based on: Chemical type, Department, Task and Area...
- Group Setting: Industrial type, sampling company and city ...

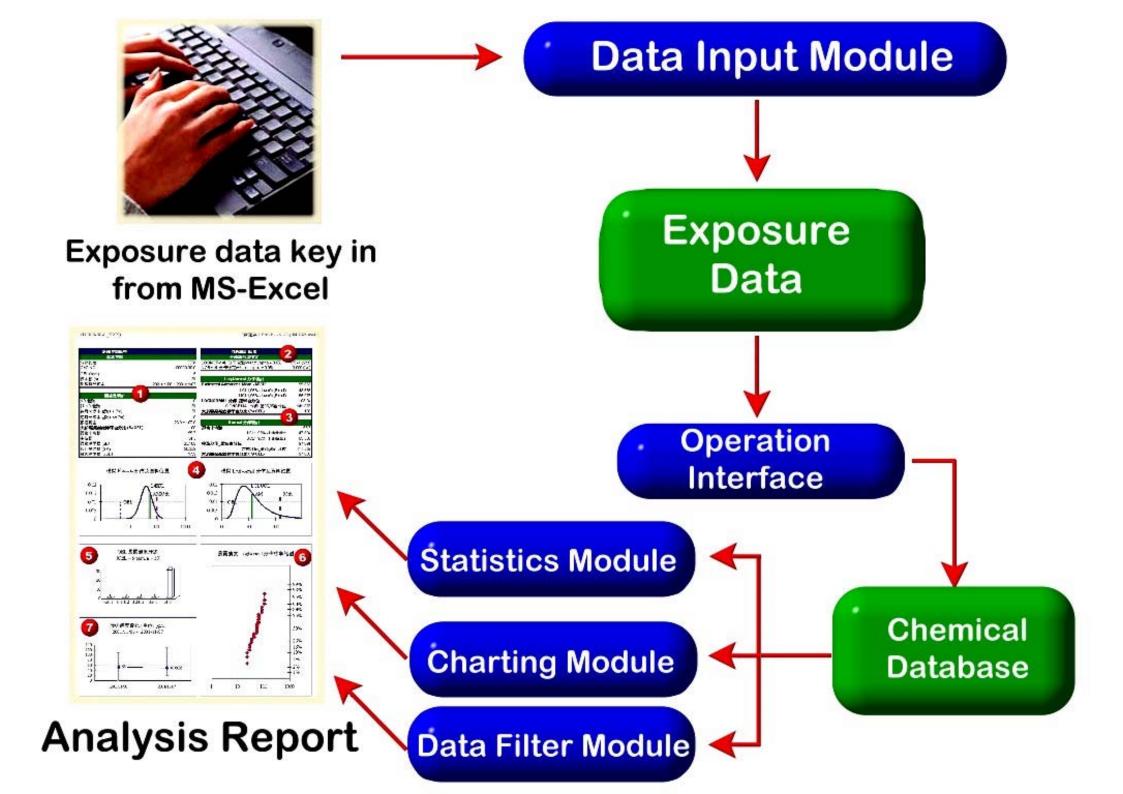

👿 篩選記錄 (單一個廠事業單位	立,環測資料管理者…適用)	×	👿 開啓群組(分析宙驗室, 採樣機構, 集團總公司	適用) 🗾
			「行業別」	探樣機構
▲ □ 乙醇 □ 醋酸		● 化學/分析 ○ 物理値讀	 □ 光電材料及元件製造業 □ 網路資訊供應業 □ 電子管製造業 	 □ 中華民國工業安全衛生協會台中作 □ 中華民國工業安全衛生協會台北作 □ 佑民工礦安全衛生技師事務所
		- 開鍵字搜尋	□ 電腦組件製造業	□ 全安工安暨工礦衛生技師事務所 □ 東旭工礦衛生技師事務所
□丙酮□□丙酮□□□丙二醇甲醚	BU4	作業名稱: 機台設備:		事業單位
□ 丙二醇甲醚酯 □ 甲苯	□ BU6 □ C260	區域位置: 作業內容:	□台中縣 大雅 □台北市 南港區	□888 □工研_中科廠
□ 2-甲氧乙基乙酯 □ NMP	D110 D120		 □ 台南縣 新市 □ 新竹縣 寶山 □ 新竹縣 竹東 	□ 工研_中科研發中心 □ 工研_南科廠 □ 工研_南科模組廠
	D320	分析日期時間範圍		
□ 鉛 □ 氯化氫 □ 氯化氫	D340 D350 D391	1990年1月1日 🗸 2004年9月14日 🗸	1990年1月1日 🗸 2004年9月14日 🗸	確定取消
	D411			

Advanced Statistic work

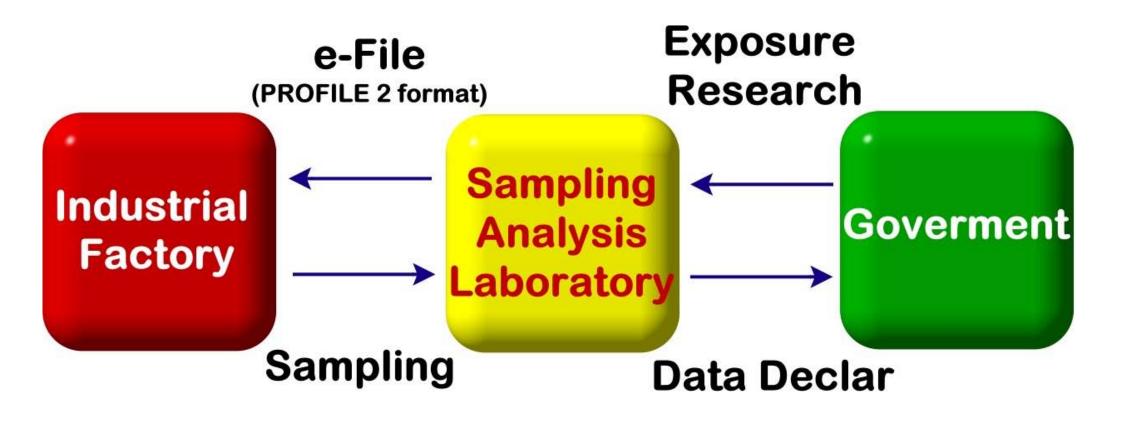

- Vertex Refer to AIHA statistic tool
- Increase more valuable functions
- **V** The complete history trend plotting
- Normal and Log-Normal distribution drawing
- Red area is the probability of above
 OEL(Occupational Exposure Limited)
- VI OEL classification bar chart
- 😻 Analysis report


Normal and Log-Normal distribution drawing


- Value of the second text of the second secon
- X-axis: Concentration
- V-axis: Probability value
- Version Red Area: the probability of above OEL



The History Trend Plotting


- Integrated exposure data automatically
- Mean value by geometric mean (GM)
- Standard deviation by geometric standard deviation (GSD)
- 😻 X-axis: Date
- Y-axis: ExposureConcentration

Next Step and Feature Work

The Comprehensive Solutions

Industrial Technology Research Institute: Associate Researcher

E-mail: pbpk@mail2000.com.tw

