

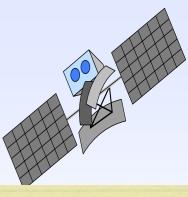
SOFTWARE SYSTEM SAFETY AND RELIABILITY

M. Xie, PhD (Quality), Fellow of IEEE Professor, Dept of Industrial & Systems Engineering National University of Singapore

Quality, Reliability, Safety

Quality: multi-dimensional measurement Plenty of data

- Reliability: most important attribute of product quality, study of failures, their causes and consequences
 - Some data
- Safety: dealing with most critical failures
 Lack of data/information


My work/experience in Reliability

- Solution Nuclear power plant monitoring system
- Telecommunication system
- Traffic control system
- Automobile
- Aerospace
- Mostly concerns software, complex, and safety-critical system

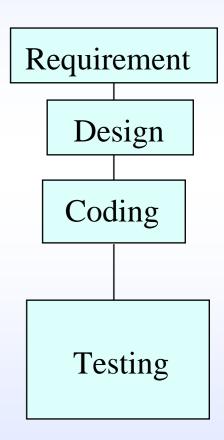
Reliability of Software System

- Complex systems contain both software and hardware
- Software is different from hardware in many aspects
- The second secon
- Software problems are usually solved only by the developer
- For software system
 - Failure cause is identified after a failure
 - Action is taken to remove the cause
 - Same type of failure will not occur
 - Time to next failure is likely to be longer

"<u>Software Hall of Shame</u>" (from IEEE Spectrum, Sept 05 issue)

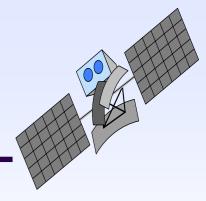
YEAR	COMPANY	OUTCOME (COSTS IN US \$)	
2005	Hudson Bay Co. [Canada]	Problems with inventory system contribute to \$33.3 million* loss.	
2004-05	UK Inland Revenue	Software errors contribute to \$3.45 billion* tax-credit overpayment.	
2004	Avis Europe PLC [UK]	Enterprise resource planning (ERP) system canceled after \$54.5 million [†] is spent.	
2004	Ford Motor Co.	Purchasing system abandoned after deployment costing approximately \$400 million.	
2004	J Sainsbury PLC [UK]	Supply-chain management system abandoned after deployment costing \$527 million.*	
2004	Hewlett-Packard Co.	Problems with ERP system contribute to \$160 million loss.	
2003-04	AT&T Wireless	Customer relations management (CRM) upgrade problems lead to revenue loss of \$100 million.	
2002	McDonald's Corp.	The Innovate information-purchasing system canceled after \$170 million is spent.	
2002	Sydney Water Corp. [Australia]	Billing system canceled after \$33.2 million [†] is spent.	
2002	CIGNA Corp.	Problems with CRM system contribute to \$445 million loss.	
2001	Nike Inc.	Problems with supply-chain management system contribute to \$100 million loss.	
2001	Kmart Corp.	Supply-chain management system canceled after \$130 million is spent.	
2000	Washington, D.C.	City payroll system abandoned after deployment costing \$25 million.	
1999	United Way	Administrative processing system canceled after \$12 million is spent.	
1999	State of Mississippi	Tax system canceled after \$11.2 million is spent; state receives \$185 million damages.	
1999	Hershev Foods Corp.	Problems with ERP system contribute to \$151 million loss.	

1999	United Way
1999	State of Mississippi
1999	Hershey Foods Corp.
1998	Snap-on Inc.
1997	U.S. Internal Revenue Service
1997	State of Washington
1997	Oxford Health Plans Inc.
1996	Arianespace [France]
1996	FoxMeyer Drug Co.
1995	Toronto Stock Exchange [Canada]
1994	U.S. Federal Aviation Administration
1994	State of California
1994	Chemical Bank
1993	London Stock Exchange [UK]
1993	Allstate Insurance Co.
1993	London Ambulance Service [UK]
1993	Greyhound Lines Inc.
1992	Budget Rent-A-Car, Hilton Hotels, Marriott International, and AMR [American Airlines]


Administrative processing system canceled after \$12 million is spent.
Tax system canceled after \$11.2 million is spent; state receives \$185 million damages.
Problems with ERP system contribute to \$151 million loss.
Problems with order-entry system contribute to revenue loss of \$50 million.
Tax modernization effort canceled after \$4 billion is spent.
Department of Motor Vehicle (DMV) system canceled after \$40 million is spent.
Billing and claims system problems contribute to quarterly loss: stock plummets.
leading to \$3.4 billion loss in corporate value.
Software specification and design errors cause \$350 million Ariane 5 rocket to explode.
\$40 million ERP system abandoned after deployment, forcing company into bankruptcy.
Electronic trading system canceled after \$25.5 million** is spent.
Advanced Automation System canceled after \$2.6 billion is spent.
DMV system canceled after \$44 million is spent.
Software error causes a total of \$15 million to be deducted from IOO 000 customer accounts.
Taurus stock settlement system canceled after \$600 million** is spent.
Office automation system abandoned after deployment, costing \$130 million.
Dispatch system canceled in 1990 at \$11.25 million**; second attempt abandoned after deployment, costing \$15 million.**
Bus reservation system crashes repeatedly upon introduction, contributing to revenue loss of \$61 million.

Travel reservation system canceled after \$165 million is spent.

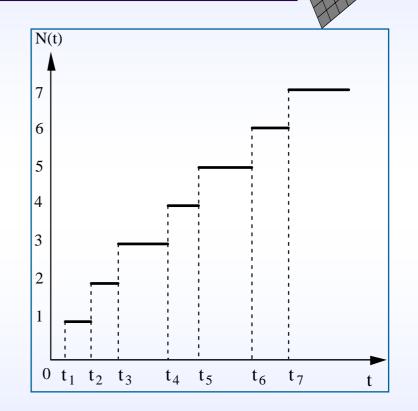
- Software failures can be tracked to individual mistake
- Although in theory we can make it correct, in reality it is impossible
- Testing is costly
- Testing cannot prove the correctness
- There are many testing techniques with varying degree of efficiency
- Difficult to improve reliability



Software Reliability compared to hardware

- The process is essentially a design process
- Mainly human errors involved in creating the software
- The No physical aging of the software
- Traditional redundancy is not useful
- Problems can be removed permanently
- Theoretically it can be made perfect
- Testing takes up to 50% of development resource

SOFTWARE RELIABILITY MODELS Past, Present, and Future


M. Xie

Dept of Industrial & Systems Engineering National University of Singapore

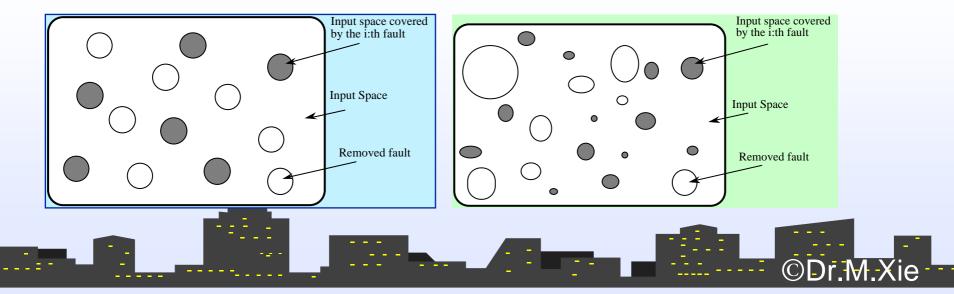
Markov Process Models

- Jelinski-Moranda
- Farliest model
- Equal contribution of all faults
- Finite number of possible failures
- Debugging assumed to be perfect

 \bigcirc

Dr-

The Jelinski-Moranda Model


- the number of initial faults is an unknown but fixed constant;
- a detected fault is removed immediately and no new fault is introduced;
- times between failures are independent, exponentially distributed random quantities
- all remaining software faults contribute the same amount to the software failure intensity
- The time between the (i-1):st and the i:th failures is exponentially distributed with

 $\lambda_i = \phi[N - (i - 1)], i = 1, 2, ..., N_0.$

'Equal Size'' Assumption

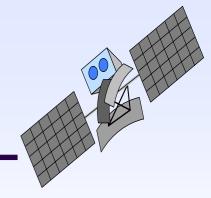
- Many models assumes that all faults contribute the same to the total failure probability
- This is equivalent to that all faults are of the same "size"

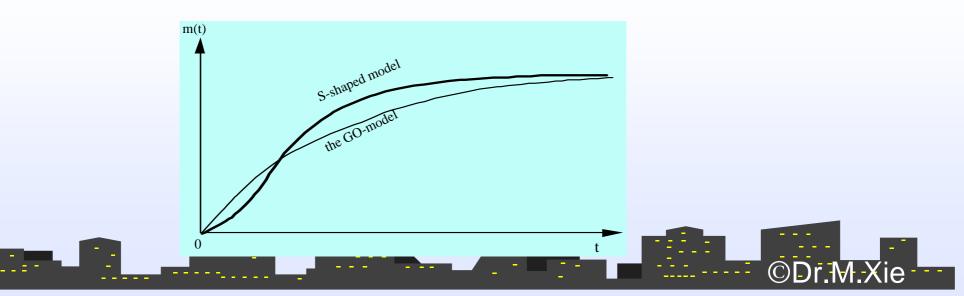
- Faults are not of equal size
- "Large" faults are likely to be detected at the beginning
- "Small" faults are difficult to detect

- Started with the concept of correctnessSelect test cases and show the percentage of
 - those that leads to a failure

- Closely related to operational profile
- Can be modified incorporating probability of input-domain data

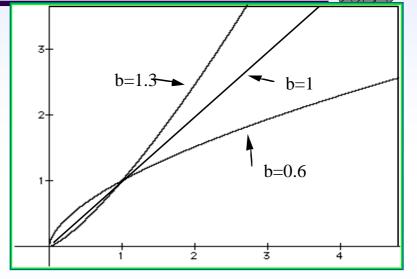
NHPP Models


- An important class of SRGMs that has been widely studied by researchers and used by practitioners.
- The testing process is assumed to follow an NHPP whose mean value function is *m*(*t*).
- The instantaneous failure intensity at time *t* can be calculated by $\lambda(t) = dm(t)/dt$


- Probably the most well-known SRM
- Many similar models
- Derived assuming the same detection rate of remaining faults
- Simple model for finite number of faults

$$m(t) = a(1 - e^{-bt}), \quad a > 0, \quad b > 0$$
$$\lambda(t) = \frac{dm(t)}{dt} = abe^{-bt}.$$

- Failure intensity increases at the beginning
- Suitable for the modeling of a learning process
- The Has shown to be good for a number of data sets $m(t) = a [1 (1 + bt)e^{-bt}]; b > 0.$

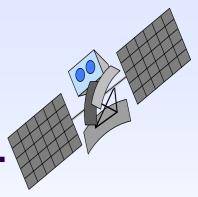


The Duane Model

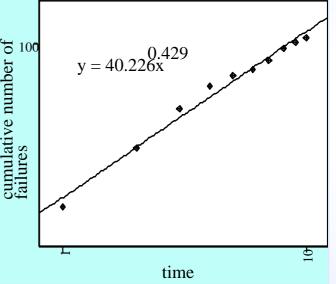
Mean value function

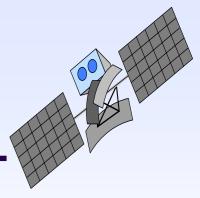
 $m(t) = at^{b}$

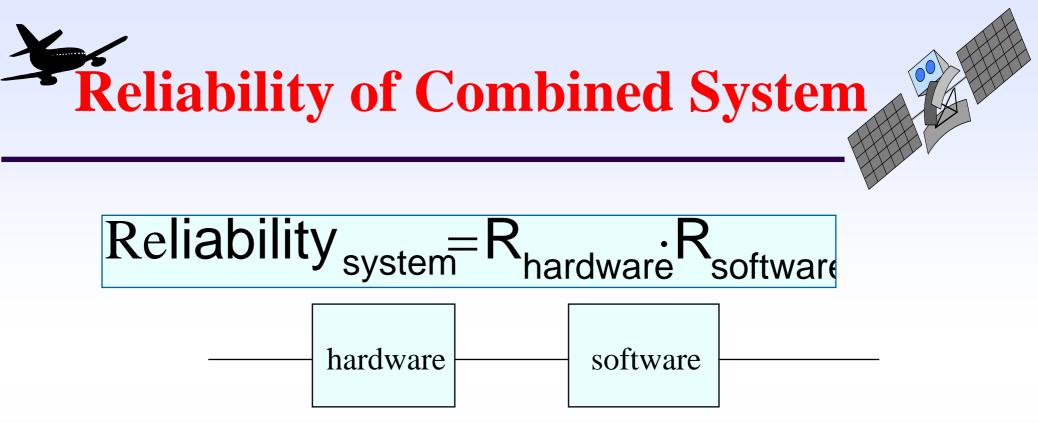
- Very flexible model
 - b < 1 improving
 - b < 1 deteriorating



- Duane plot and graphical interpretation available
- Simple and reasonably accurate
- Widely used for repairable systems


 $\lambda(t) = \frac{dm(t)}{dt} = abt^{b-1}$

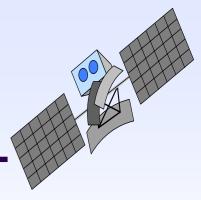

The Duane Plot


- The Auseful relationship:
- $\sim \ln m(t) = \ln a + b \ln t$
- Plot cumulative number of failures vs t on a log-log scale
- Fit the plot with a straight line
- \sim slope=b and intercept=lna
- The validity of the model can be checked BEFORE its use

Advantages of Graphical Approach

- (a) Model verification is very simple
- (b) Parameter estimation can be carried out easily
- (c) Model can be validated BEFORE parameter estimation
- (d) Plotting can be done using simple spreadsheet software

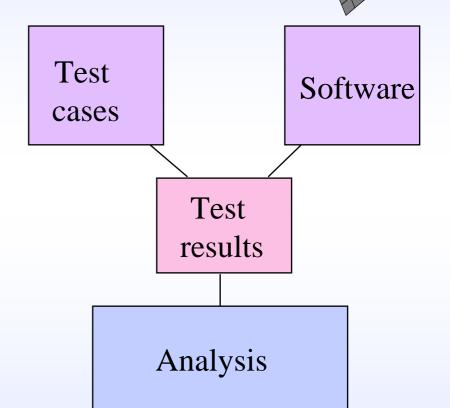
- Assuming both are needed for the system to work
- Tailure of one should not affect the other
- The failure causes should be able to be isolated
- Software may not be more reliable than hardware
- Important to consider serious failures



- Many different measures used (not appropriate)
- the number of faults
- defect density
- defect per module
- defect per KLOC
 - defect per FP

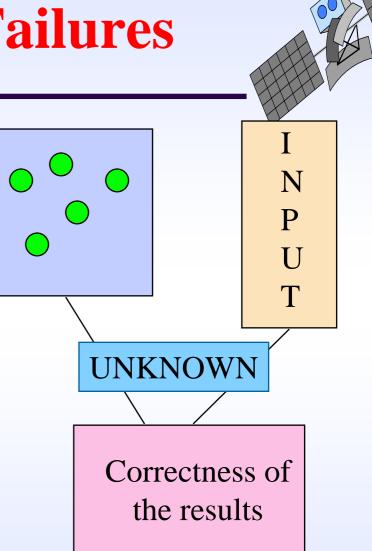
8

Reliability vs # Faults

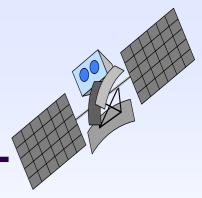


- The number of faults is not a good reliability measure
- Testing should focus on reliability improvement rather than removing more faults
- Reliability depends on the number of faults
- Software metrics can be used to estimate the number of faults
- Estimates of the number of faults are not accurate

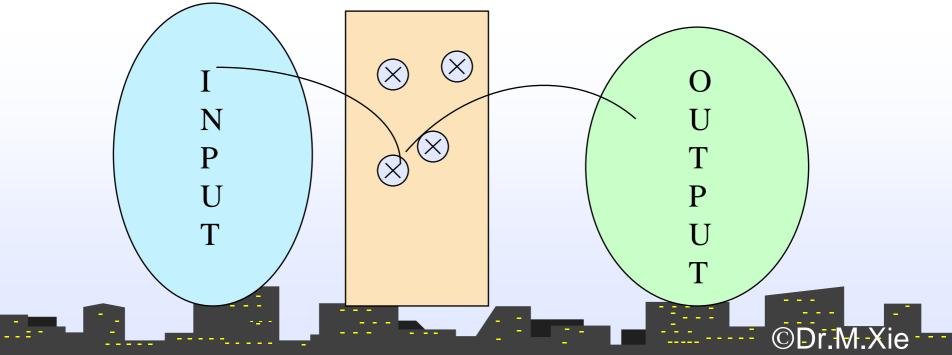
Random Testing


- Test cases are selected randomly
- Test cases should follow the operational profile input states are selected in accordance of the probabilities of occurrence when used
- This will minimize the probability of failure experienced by the customers____

©Dr.M


Randomness of Failures

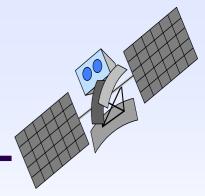
- Number of failures per unit time is random
- Time to next failure is random
- This is because
 - the location of faults in the programme is unknown
 - the usage of programme is not predictable



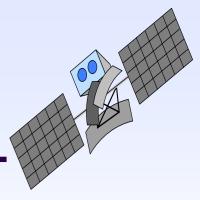
"Theory" of Testing

- Input space, software, output space
- Some inputs lead to a failure because of a fault
- The fault can be identified and removed

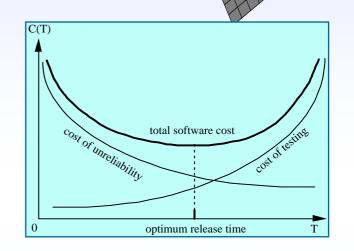
Effect of Imperfect Debugging


- Most of the software testing processes belong to the imperfect debugging ones.
- The development of the software is extremely time-consuming and costly.
- It is important to know the effect of imperfect debugging on software cost.

- Relate the number of faults to various software metrics and a relationship can be derived using earlier projects
- Existing studies focus on the number of faults
- Useful for the planning
- Require information from earlier and similar projects


Need for and Availability of Data

- Data (collection) can be used
 - to help with quantitative analysis
 - to study the current system/project
 - to help identify weak spots in the process and system
 - to be used as a record
- The second should be available


Uses of SR Models

- To assess the reliability of software
- To predict future failure behavior
- To study the effective testing technique
- To help allocating resources
- To provide information how to improve the process and product

Release Time Determination - cost minimization

Time to minimize total cost - need a cost model $c(T) = c_1 m(T) + c_2 [m(\infty) - m(T)] + c_3 T.$

- \sim c₁ = expected cost of removing a fault in testing
- \sim c₂ = expected cost of removing a fault in field
- c₃ = expected cost per unit time of software testing including the cost of testing, the cost due to a delay in releasing the software, etc.

Summary on use of software reliability models

- Seed to incorporate software metrics
- Seed to consider testing strategies
- Reliability as an aspect of quality
- Understanding of randomness and statistical errors a necessity
- Suitable model selection approaches should be developed
- Models should be used in decision-making