Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels

Authors: B.L. Luk, A.A. Collie, D. S. Cooke and S. Chen

Presented by: Dr. B.L. Luk

Outline of the Presentation

Background
Two major remote operation projects
Video
Conclusion

How does a walking & climbing robot look like?

First Legged Wooden Cow Robot in History

「我

是用

州報道

Background

- Magnox type Nuclear Reactors form the early generation of commercial nuclear reactors in the U.K.
- Non-Destructive Test (NDT) programmes were set up to inspect some early-built reactors to extend their life span.
- Two reactors were inspected by the walking and climbing robots:
 - Sizewell 'A' Power Station in Suffolk
 - Trawsfynydd nuclear power station in North Wales

Sizewell 'A' Power Station

To perform NDT on various welds on the main reactor cooling gas ducts

Tasks

- The original task was to inspect various welds on the main reactor cooling gas ducts
- Removing unwanted objects on the duct surfaces which hindered the inspection

Main Difficulties

Confined space – The robot was required to go through a small air valve

The duct is actually connected directly to the Reactor Pressure Vessel (RPV) and hence no objects were allowed to fall into the RPV during the cutting operation SADIE (Sidewell 'A' Duct Inspection Equipment) Robot System

- DC servo and pneumatic actuators
- Vacuum grippers for climbing wall
- Magnetic feet for safety and extra stability
- Self cleaning grippers
- Sliding frame moving mechanism
- Force controlled gripper feet
- Teleoperation
- Intelligent tool control

Mechanical Structure

Dimension: 640mm x 400mm x 180mm

Control Console

Ladder Bracket Removal Package

SADIE and Tool Packages

Trawsfynydd nuclear power station

Add sensors to Reactor Pressure Vessel

Tasks

- The original task was to install additional thermocouples onto the RPV surface
- Wire brushing to clean the surface to ensure good contact with the thermocouples
- Metal cutting to remove unwanted objects which hindered the installation of thermocouples

Main Difficulty

The robots were required to work in confined space

NERO Robots

NERO stands for Nuclear Electric Robot Operator

Three NERO were built

- NERO I carried a special tape feeder for installing additional thermocouples
- NERO II had a rotating wire brush for removing loose materials from the RPV surface
- NERO III had a 1.3HP rotary disc grinder fitted on a swing arm and was mainly used for removing unwanted studs and weld splatter from the surface.

NERO III

NERO III – Terminator!

Conclusions

- The robots have operated for hundreds of hours in main cooling gas ducts at Sizewell 'A' and on RPV at Trawsfynydd
- Remove many ladder brackets and unwanted objects
- Inspect many meters of welds
- Install thermocouples onto the RPV
- Prove its usefulness in remote inspection application especially in hazardous environments
- However, launching the robots onto the structures can be difficult

Robug IIs Intelligent Walking & Climbing Robot

Thank You