

System Safety is....

- The application of engineering and management principles, criteria, and techniques to optimise Safety within the constraints of operational effectiveness, time, and cost throughout <u>all phases</u> of the System life cycle
- Primarily a <u>management tool</u> that applies special technical and managerial skills to the systematic, forward-looking identification and control of hazards <u>throughout the life cycle</u> of a project, program, or activity
- Addressing safety at a system level
 "A system is a composite, at any level of complexity, of personnel, procedures, materials, tools, equipment, facilities, and software"

HKARMS

History of System Safety

- The System Safety Program
 grew out of the aerospace and military programs to improve safety
- The proactive system-level approach replaced the fly-fix-fly approach
- 1962: System Safety Engineering for the Development of Air Force Ballistic Missiles
- 1969: MIL-STD-882, System Safety Program Requirements

History of System Safety

- The aviation industry significantly improved its safety records in the 60s and 70s
- "Today, there are more people killed by donkeys annually than by air crashes"
- Nowadays, System Safety has been commonly applied in major industries such as military/ defense, chemical processing, aerospace, power generation and distribution, transportation, etc.

HKARMS

Objective of System Safety

 To achieve acceptable mishap risk through a systematic approach of hazard analysis, risk assessment, and risk management MIL-STD-882D, Department of Defense, USA

Risk Management

- Risk Management is a term given to a set of practices that lead to minimizing possible harm to individuals
- While it may not be possible to totally protect individuals, a risk management system seeks to identify factors that may increase those risks and actively promote practices that will keep risk as low as reasonably practicable

HKARMS

Risk Management Principles

- Prevention of serious incidents is the highest priority
- Safe and accessible environments are everyone's responsibility
- Continuous communication, accurate reporting, consistent analysis of information, and development of sound, person-centered strategies are essential to prevent serious incidents

Risk Management Principles

- Staff are competent to respond to, report and document incidents in a timely and accurate manner
- Individuals have the right to a quality of life that is free of abuse, neglect, and exploitation
- Risk management systems should emphasize staff involvement as integral to providing safe environments
- Quality of life starts with those who work most closely with persons receiving services and supports

HKARMS

Elements of Effective Risk Management

- Training of all involved in supporting individuals with developmental disabilities in the risk management process
- Individual risk assessment, evaluation, and planning
- A well-defined process for reporting incidents that is timely, complete, and accurate
- Immediate follow up and intervention to ensure health and safety and to mitigate future risk

Decision Making

Decision Options

- Not to continue with the activity
- Conduct more detailed analysis for further information
- Treat and Control Risks
- Accept risk without further action (To do nothing!!)

Criteria Options

- Regulated limits
- Regulatory guidance
- Company goals
- Good will
- Social responsibility
- Financial Costs
- Risk
 - Risk-based decision
 - Risk-informed decision

HKARMS

Principles of Risk Control

- Risk Elimination
- Risk Avoidance
- Risk Transfer
- Risk Reduction
- Risk Absorption

Chance only favors the prepared mind.

Recognizing Risk

- You have to recognize risk before you can understand risk
- You have to understand risk before you can assess it
- You have to assess risk before you can manage or control it

Defining Risk

Definitions of Risk

Risk=Likelihood×Consequence

 Classical, but most misleading. More useful in hazard analyses

$$Risk = \frac{Hazard}{Safeguards}$$

• Risk is never zero by increasing level of safeguards, as long as hazard is present

Risk=Uncertainty×Damage

• Without uncertainty or damage, there is no risk

Quantitative Definition of Risk

- In general, risk is used to answer:
 - What can go wrong?
 - How likely is it that this will happen?
 - If it happens, what are the consequences?
 - What are the uncertainties?
- Thus, risk can be thought to be consisting of four elements:
 - Scenarios
 - Likelihood
 - Consequence
 - Uncertainties

HKARMS

Quantitative Definition of Risk

Scenario	Likelihood	Consequence
S ₁	L ₁	C ₁
\$ ₂	L ₂	C ₂
S ₃	L ₃	C ₃
•	•	•
•	•	•
•	•	•
•	•	•
•	•	•
S _N	L _N	C _N

- Risk = $\{ <S_i, L_i, C_i > \}$
- For each S_i , Risk_i = $L_i \times C_i$
- Total risk of the system is $R = \Sigma_i L_i \times C_i$

Uncertainties

- Uncertainties are measured by level of belief
- In general, there are three types of uncertainties associated with a risk model:
 - Stochastic uncertainties
 - Modelling uncertainties
 - Parameter uncertainties
- Without an explicit consideration of uncertainties, the result of a risk analysis can be meaningless
- Probability is used as the measurement scale
 - Strictly speaking, A+A≠2xA

HKARMS

Sources of Uncertainty

- No access to the whole truth
- No categorical answer
- Incompleteness
 - The qualification problem impossible to explicitly enumerate all conditions
- Incorrectness of information about conditions
- The rational decision depends on both the relative importance of various goals and the likelihood of its being achieved

0

10.8

10.7

10⁴

10⁻³

10-2

FREQUENCY; EVENTS PER ROOM YEAR

10.1

1.0

10.8

10.2

Higher Amount of Fire Hazard

Same Hazard may Impose Different Risks due to Different Safeguards

- A foreign material, e.g., methane gas in confined space
- A situation or a condition, e.g., loose slope
- A design compromise or inadequacy, e.g., a weak structure or a lack of safety measures
- A failure of a component or a system, e.g., lifting apparatus failure
- A latent failure of a component or a system, e.g., gas detector fails to detect gas at dangerous level

Typical Hazard Analysis Tools

- Open ended questions with brainstorming what if
- Check lists, Hazard lists
- Preliminary hazard analysis
- Failure Mode and Effect Analysis
- Hazop
- Fault Trees

HKARMS

Hazard Evaluation

- No standard way, the complexity of the evaluation depends on the application and industry
- Typically use MIL-STD-882 style look up table to characterise likelihood and consequence
 - Very popular, quick and easy
 - Has become "the" method in hazard evaluation due to lack of expertise and resources
- Look up tables \rightarrow risk matrices

Contract System: Subsystem	No: m:			Hazard Analysis Work Sheet					Prepared by: Reviewed by: Authorised by:			Date: Date: Date:				
Ref No.	Hazard Scenario Description/	Op. Mode	Existing Safeguard/ Control Measure		Risk I	mpac P	t C	Proposed Mitigation Measures/Control	T	Res Im	idual pact		Comment/ Resolution	Status	Responsibility	Days Remained Open
	Consequence		Cond of Measure	L	C	ĸ	G		L	C	ĸ	G				Open
										-						

People often mistakenly think that it is THE" only way to do hazard or risk analysis... NOT

HKARMS

Worksheet Methods

- The most popular safety analysis approach is the risk-ranking method using worksheets to define hazard scenarios
- Each record (row) in the worksheet describes an independent scenario
- The approach uses discrete risk-ranking matrices to character likelihood, consequence and risk class

Strictly speaking, a worksheet type analysis is a Hazard Analysis, not a Risk Analysis

Examples of Likelihood Scales

S	Scale	Likelihood
Hig	jh (H)	Greater than once per day
Me Hig	dium h (MH)	Greater than once per week
Me Lov	dium v (ML)	Greater than once per month
Lo۱	w (L)	Greater than once per year

Railway Operations Managers

Board of a Battery Manufacturer

Scale	Likelihood
High (H)	Once a month
Medium High (MH)	Once a year
Medium Low (ML)	Once every five years
Low (L)	Once every twenty years

HKARMS

Examples of Impact Scales

_		
97	Scale	Impact
Hig	gh (H)	Partial line closure (or worse)
Me Hiç	dium gh (MH)	Station closure
Me Lo	edium w (ML)	Journey delay > 2 mins
Lo	w (L)	Journey delay < 2 mins

Railway Operations Managers

Board of a Battery Manufacturer

Scale	Impact
High (H)	Threatens business survival
Medium High (MH)	Long term damage to business
Medium Low (ML)	Short term damage to business
Low (L)	Trivial

Typical Risk Matrix

Consequence Likelihood	Insignificant 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
Almost Certain A	S	S	Н	Н	Н
Likely B	М	S	S	н	н
Moderate C	L	М	S	н	Н
Unlikely D	L	L	М	S	Н
Rare E	L	L	М	S	S

H = High risk detailed research and management planning required at senior levels

S = Significant risk senior management attention needed

M = Moderate risk management responsibility must be specified

L = Low risk : manage by routine procedures

HKARMS

Example of Risk Matrices

				Conseq	uence Clas	s		
		R – Service- Related	Cl – Trivial	C2 – Minor	C3 – Serious	C4 – Critical	C5 – Disastrous	
	F1 - Frequent (>10/yr)	R	В	A	А	A	А	
8	F2 - Common (1/yr to 10/yr)	R	В	В	A	A	А	
Clas	F3 – Likely (0.1/yr to 1/yr)	R	с	В	A	A	A	
ency	F4 - Rare (0.01/yr to 0.1/yr)	R	с	с	В	A	А	
nbə.	F5 – Unlikely (10 ⁻³ /yr to 0.01/yr)	R	D	с	с	В	А	
E.	F6 - Improbable (10 ⁻⁴ /yr to 10 ⁻³ /yr)	R	D	D	с	с	В	
	F7 – Incredible (<10 ⁴ /yr)	R	D	D	D	С	с	
			Risk Class				Descrip	tion
			A	High R to a leve	isk – Risk (el that is Al	control me ARP with	asures should a top priorit	d be implemented to mitigate the risk y.
			В	Medium to mitig	n Ri sk – C ate the risk	ost-effecti to a level t	ve risk contr hat is ALAR	rol measures should be implemented P within a reasonable time.
			С	Low Ri mitigate	isk – Cost- the risk to	effective 1 a level tha	isk control : t is ALARP :	measures should be implemented to with a low priority.
			D	Negligil action i impleme	ble Risk – is normally ented to fur	Risk is c required. ther mitiga	onsidered ac Cost-effec te the risk w	cceptable; no additional risk control tive risk control measures may be ith the lowest priority.
				•				

Another Example of Risk Matrix

							c	ONSEQUENC	E		
					7	6	5	4	3	2	1
					Trivial	Negligible	Marginal	Serious	Critical	Catastrophic	Disastrous
			Fatality						4	5 or more	
		Staff/Contractor Safaty	Major Injury					<5	5 or more		
		Static Ontractor Safety	Minor Iniury	with \geq 3 days sick leave			4	5 or more			
			nun uguj	with < 3 days sick leave		4	5 or more				
			Fatality						<	5-50	51-500
		Passenger/Public Safety	Major Injury					-5	5-50	51-500	501 - 500
			Minor Injury				-5	5-50	51-500	501 - 5000	>5000
			System Disruj	ption			<20 min	1 hour	1 day	1 week	1 month
		Service	Line Disruption			20-60min	few hours	1 day	1 week	1 month	few month
_	_		Station Disrup	otion	<20min	few hours	1 day	1 week	1 month	few months	l year
	A	Few times per week or more	≥ 100 /year		R3	R1	R1	R1	R1	R1	R1
	в	Few times per month	≥ 10 - <100 /	/ear	R4	R2	R1	R1	R1	R1	R1
F	с	Few times per year	≥ 1 - <10 /yes	u	R4	R2	R2	R1	R1	R1	R1
E	D	Few times in 10 years	≥ 0.1 - <1 /ye	धा	R4	R3	R2	R1	R1	R1	R1
2	E	Once since operation	≥1E-2 - <ie< td=""><td>l /year</td><td>R4</td><td>R3</td><td>R3</td><td>R2</td><td>R1</td><td>R1</td><td>R1</td></ie<>	l /year	R4	R3	R3	R2	R1	R1	R1
E	F	Unlikely to occur	≥1E-3 - <1E	-2 /year	R4	R4	R3	R3	R2	R1	R1
N	0	Very unlikely to occur	≥1E-4 - <1E	-3 /year	R4	R4	R4	R3	R3	R2	R1
Ÿ	н	Remote	≥1E-5-<1E	-4 /year	R4	R4	R4	R4	R3	R3	R2
	I	Improbable	≥1E-6 - <1E	-5 /year	R4	R4	R4	R4	R4	R3	R3
	J	Incredible	< 1E-6 /year		R4	R4	R4	R4	R4	R4	R3

HKARMS

Risk Matrix Can Also be Simple

Risk Level	Description
High Risk	The hazard may cause fatal or multiple serious injuries, for all ranges of frequency
Medium Risk	The hazard may cause single serious injuries, and the likelihood of having these kinds of injuries is quite probable
Low Risk	Other risk which is neither high nor medium

HKARMS

Risk Matrix Should Actually be Designed by Quantitative Input

Upper Limit Broad	lly able	ŀ							
Tolen			0	0.001	0.01	0.1	1	10	20
er Limit			S1	S2	S3	S4	S5	S6	S7
	1	G. Mean	0.000	0.003	0.03	0.32	3.16	14.14	44.72
Broant	F1	31.62	1.00E-02	0.10	1.00	10.12	99.93	447.15	1414.21
a pteble	F2	3.16	1.00E-03	1.00E-02	0.10	1.01	9.99	44.71	141.42
	F3	0.32	1.00E-04	1.00E-03	1.00E-02	0.10	1.00	4.47	14.14
	F4	3.16E-02	1.00E-05	1.00E-04	1.00E-03	1.01E-02	0.10	0.45	1.41
	F5	3.16E-03	1.00E-06	1.00E-05	1.00E-04	1.01E-03	9.99E-03	0.04	0.14
	F6	3.16E-04	1.00E-07	1.00E-06	1.00E-05	1.01E-04	9.99E-04	4.47E-03	0.014
	F7	0.00	1.00E-08	1.00E-07	1.00E-06	1.01E-05	9.99E-05	4.47E-04	1.41E-03

- Commonly adopted in UK and related systems
- Broadly distinguish risks into 3 regions
- If risk falls into Tolerable (ALARP) region, risk reduction is introduced unless the cost is grossly disproportional to the improvement gained
- Many gray areas

Advantages of Worksheet Methods

Hmmm, this is a Risk Class A hazard. Risk Analysis is so easy!!!

- Everybody has done one before
- Easy to apply, can be used by non-experts
- Detailed analyses not required
- Can be easily done in spreadsheet such as Excel
- Useful in evaluating a large number of alternatives with obvious differential risks

Using Risk Matrices: How to Beat the System

Manage the Risk of Painting?

- QRA? No.
- Hazard analysis (JHA?)
 - Identify hazard
 - Analyse and evaluate
 - Recommend measures
 - Monitor and review

HKARMS

Using Worksheet and Risk Matrix

Hazard	Consequence	Prob	Severity	Risk Class
Struck by falling object	Severe head injury	Med	High	I

Severity Probability	Low	Med	High
Low	IV	III	II
Medium	III	II	I
High	II	I	I

I = High Risk... IV=Negligible Risk, no further action

Using Worksheet and Risk Matrix

Hazard	Consequence	Prob	Severity	Risk Class	
Struck by falling paint can in Room 230A	Minor head injury	Low	Low	IV	
A	Severity Probability	Low	Med	High	
	Low	IV		П	
T 1	Medium	III	II	I	
- M// 🚯	High	II	I		

- Break down high risk item into small items
- Create a pile of papers, etc.
- No additional work is needed!

HKARMS

Another Example of Mis-Using a Risk-Ranking Worksheet

Hazard	Consequence	Prob	Severity	Risk Class
Pump Room fire	Both pumps fail	Med	High	Α

Severity Probability	Low	Med	High	
Low	D	С	В	
Medium	С	В	A	
High	В	A	A	

- Pump Room fire is not a rare event
- Losing both pumps will loss cooling

Example of Mis-Using a Risk-Ranking Worksheet

Hazar	(Conseque	nce	Prob	Severity	Risk Class	
Pump A on fire Pump A damaged						Med	С
Severity Probability	, Low	Med	High		5-0		U
Low	D	С	В			AL.	

Severity
ProbabilityLowMedHighLowDCBMediumCBAHighBAA

• A high risk location can be easily broken down into components many sub-items (rows) with a lower risk for each sub-item

HKARMS

Typical Mistakes in using Worksheet/ Risk Matrices

- Mix up risk matrices, if use L/C/R must show all 3 values
- Show scoring matrices but did not show scores
- Mix up potential cause and hazard scenarios
- Scenario description not concise
- Did not show residual risk
- Miss key hazards (e.g., spatial separation)
- Provide PPE is not the best bet

Disadvantages of Worksheet Methods

- Anyone can be an instant expert, results can be inconsistent between users
- Difficult to verify assumptions and results
- Cannot evaluate complex situation
- Difficult to identify common mode failures, system interactions, cascaded failures, etc.

- Cannot add up risks
- Cannot compare alternatives in same risk class
- Cannot yield the total risk of a system

HKARMS

Problems with Most Identification Tools

- What if thinking is difficult for some
- People do not perceive normal work conditions to be a hazard
- People not trained in safety may not know what is a hazard
- People are reluctant to spend time and effort at the planning stage
- Copying other people's hazard list is easy... And often meaningless

Case Study:

Verifying System Safety Acceptance of Guaranteed Emergency Brake Rate (GEBR) of a Light Rail System

- Automatic Train Control (ATO)
- Automatic Train Control (ATC)
- Manned vs Driverless System

Re-Signalling of a LRV system in California

- Background
 - Established (ageing) Light Rail Transit System
 - Part tunnel, part surface street
- System improvement
 - Purchase New Vehicles
 - Replace Train Control System
 - Improved throughput (reduce headway)
 - Improve safety

HKARMS

Guaranteed Emergency Brake Rate

- Determine the minimum distance between trains; traditionally, 1.0 to 2.2 mphps
- Must be adequate to avoid collision within an acceptable safety margin
- Must be sufficiently high to minimize the time separation of trains (headway) but not too high too cause jerking
- limited by available rail adhesion (coefficient of friction)
 - Friction, rolling, sliding
 - Snow, wet leaves
 - Sand box

Braking System on these LRV

- Propulsion Brake (Dynamic Brake)
- Service Brake (Friction Brake)
- Emergency Brake (Friction Brake and Track Brake)
- On each coach of LRV (1 to 6+ units)
 - 3 sets of track brakes (TBs) (6 total)
 - 2 sets of power truck friction brakes (FBs) (4 total)
 - 1 set of center truck FBs (2 total)

GEBR Verification Procedures

- Define Safety Margin
- Risk Identification
- Risk Assessment
- Risk Control
- Risk Communication

HKARMS

Define Safety Margin

- How safe is safe?
- Safety requirements specify that no unacceptable event shall occur during the lifetime of the system
- 1x10⁶ hours MTBF is established as safety limit
- To Account for uncertainties and data variability
 - Any event with a brake rate less than 3 mphps is also subject to risk mitigation
 - Events with a brake rate less than 4 mphps should also be verified with testing or calculations

HKARMS

Risk Identification and Assessment

- Integrated Event Tree/Fault Tree analysis technique
- Postulate scenarios using event tree
- Determine system unavailability using fault tree

Postulate Scenarios

- Safeguards (safety barriers) are
 - M Out of 6 TBs Functional
 - N Out of 4 Power Truck Brakes Functional
 - R Out of 2 Center Truck FBs Functional
- All failure scenarios are considered
 - Evaluated 105 scenarios for all possible failure combinations, not just one or two "worst case" scenarios
 - Each with an expected likelihood and consequence
- Consequence is measured by the resulting brake rate
- Individual risk not assessed at this stage

HKARMS Postulate Scenarios Using Event Tree Brake Rate m out of 6 Track n out of 4 Axles of r out of 2 Axles of Scenario Demand of EB Likelihood Achieved Brakes Functional PT FB Functional CT FB Functional No. (Consequence) 1 All 6 TB Operational, p1, 2.36 mphps ... 5 out of 6 TB Operational, p2 1.97 mphps ... All 4 axles PT FB All CT FB IEp4p9p13 49 1.19+2.01+0.96 ... Operational, p8 2.68 mphps Operational, p13 0.96 mphps 4 out of 6 TB =4.16 Operational, p3 1.57 mphps IE 3 out of 4 axles PT FB 3 out of 6 TB 1 out of 2 axles CT FB Operational, p14 0.48 mphps Operational, p9 2.01 mphps 1.19+2.01+0.48 IEp4p9p14 50 Operational, p4 1.19 mphps =3.68 2 out of 4 axles PT FB Operational, p10 1.34 mphps 2 out of 6 TB Operational, p5 0.79 mphps All CT FB Fail. IEp4p9p15 1.19+2.01+0.0 51 1 out of 4 axles PT FB p15, 0 mphps =3.2 out of 6 TB Operational, p11 0.67 mphps ... Operational, p6 0.39 mphps All TB Fail, All PT FB Fail, ... p7, 0 mphps p12, 0 mphps ... Event Tree=? 105

Probability of a Sequence

Event Tree Analysis

Determine Friction Brake Unavailability

- FBs are controlled by two Emergency Brake Valves (EMVs), One for both sets of Power Truck Brakes and one for the Center Truck Brakes
- All FBs are controlled by REMA

E Valves are de-energise to activate emergency friction brake

REMA Emergency Relay A

B5-E	Power Truck Emergency Magnet Valve
B6-E	Center Truck Emergency Magnet Valve

Fault Trees Analysis

- Can be qualitative or quantitative
- Start with Top Event (a failure event) and follow through scenarios that lead to the Top Event
- Use deductive logic to systematically identify event initiators
- Separate tree into functional level, system level, subsystem level, component level, fault level, etc.
- Bottom of the tree are basic events or developed events, usually with data available

Fault Tree Symbols

- Two kinds of symbols are used in a fault tree:
 - Logic symbols
 - Event symbols
- Many symbols and styles, we stay with the simple ones here

Fault Tree Symbols

	TOP Event – forseeable, undesirable toward which all fault tree logic paths f Intermediate event – describing a sys produced by antecedent events.	event, flow,or stem state Most Fault Tree
 OR	"Or" Gate – produces output if any input exists. Any input, individual, must be (1) necessary and (2) sufficient to cause the output event.	Analyses can be carried out using only these four symbols.
 AND	"And" Gate – produces output if all inputs individually must be (1) necessary and (2) s output event	co-exist. All inputs, sufficient to cause the
\bigcirc	Basic Event – Initiating fault/failure, not de (Called "Leaf," "Initiator," or "Basic.") The B limit of resolution of the analysis.	eveloped further. Basic Event marks the

Events and **Gates** are **not** component parts of the system being analyzed. They are symbols representing the logic of the analysis. They are bi-modal. They function flawlessly.

Relationship between the Fault Tree Symbols

Fault Tree Structure, Example

 $P_T = P_1 P_2$

Fault Tree Calculation

- Fault tree is based on probability theory in solving Boolean algebra
- Approximation:
 - $P(Top) \approx P(A) \times P(B) \times [P(C) + P(D)]$
 - $P(Top) \approx 0.1x0.1x(0.1+0.2) = 0.003$
- Exact:
 - $P(Top) = P(A) \times P(B) \times [P(C) + P(D) P(C) \times P(D)]$
 - $P(Top) \approx 0.1x0.1x(0.1+0.2-0.1x0.2) = 0.0028$

Events in a fault tree cannot be a frequency or anything that has a unit; otherwise, u*u-u

Example - A Flood Alarm System

A system design goal is P_F < 5 x 10⁻⁶, per flood.

A subgrade compartment is protected against flooding by a simple alarm system. Each of the three components shown has a failure probability of 10⁻³ per demand. What is the probability of failure to alarm upon flooding?

A Flood Alarm System Component Level Redundancy

Determine Track Brake Unavailability Using Fault Tree

HKARMS

Brake Rates Used for Consequence Analysis

• The distribution of brake rate for the two Power Truck FBs and the Center Truck FBs are: 37.5%:37.5%:25%

• The TB brake rate for all 3 set of TBs (6 units) are assumed to be equally distributed

Brake Availability	TB	Power Truck FP	Center Truck
None available	0.00	0.00	0.00
1 Axle (FB) or 1 Unit (TB)	0.33	0.61	0.41
2 Axle (FB) or 2 Unit (TB)	0.66	1.23	0.82
3 Axle (FB) or 3 Unit (TB)	0.99	1.84	N/A
4 Axle (FB) or 4 Unit (TB)	1.31	2.45	N/A
5 Unit (TB)	1.64	N/A	N/A
6 Unit (TB)	1.97	N/A	N/A

Integrated Event Tree/Fault Tree Analysis

HKARMS

Fault Tree Quantification

Risk Assessment Results

Scenario Number	m out of 6 TB Functional	TB Brake Rate	m out of 4 PT FB Functional	PTFB Brake Rate	r out of 2 CT FB Functional	CTFB Brake Rate	Total Brake Rate Achieved	Scenario Conditional Probability	IE (1/yr)	Total Scenario Frequency (1/yr)	MTTH (hr)
39	4 TB	1.57	2 PTFB	1.34	0 CTFB	0.00	2.91	4.49E-10	59.11	2.66E-08	3.30E+11
40	4 TB	1.57	1 PTFB	0.67	2 CTFB	0.96	3.20	8.36E-11	59.11	4.94E-09	1.77E+12
41	4 TB	1.57	1 PTFB	0.67	1 CTFB	0.48	2.72	1.51E-13	59.11	8.94E-12	9.80E+14
42	4 TB	1.57	1 PTFB	0.67	0 CTFB	0.00	2.24	2.70E-13	59.11	1.59E-11	5.50E+14
43	4 TB	1.57	0 PTFB	0.00	2 CTFB	0.96	2.53	9.19E-05	59.11	5.43E-03	1.61E+06
44	4 TB	1.57	0 PTFB	0.00	1 CTFB	0.48	2.05	1.66E-07	59.11	9.83E-06	8.91E+08
45	4 TB	1.57	0 PTFB	0.00	0 CTFB	0.00	1.57	2.96E-07	59.11	1.75E-05	5.00E+08
46	3 TB	1.18	4 PTFB	2.68	2 CTFB	0.96	4.82	2.30E-04	59.11	1.36E-02	6.45E+05
47	3 TB	1.18	4 PTFB	2.68	1 CTFB	0.48	4.34	4.16E-07	59.11	2.46E-05	3.56E+08
48	3 TB	1.18	4 PTFB	2.68	0 CTFB	0.00	3.86	7.41E-07	59.11	4.38E-05	2.00E+08
49	3 TB	1.18	3 PTFB	2.01	2 CTFB	0.96	4.15	8.33E-07	59.11	4.93E-05	1.78E+08
50	3 TB	1.18	3 PTFB	2.01	1 CTFB	0.48	3.67	1.51E-09	59.11	8.91E-08	9.83E+10
51	3 TB	1.18	3 PTFB	2.01	0 CTFB	0.00	3.19	2.69E-09	59.11	1.59E-07	5.51E+10
52	3 TB	1.18	2 PTFB	1.34	2 CTFB	0.96	3.48	1.13E-09	59.11	6.65E-08	1.32E+11
53	3 TB	1.18	2 PTFB	1.34	1 CTFB	0.48	3.00	2.04E-12	59.11	1.20E-10	7.28E+13

Quantified results available for all 105 failure scenarios

Risk Assessment Results

- GEBR = 2.5 mphps is marginally achievable
- Two groups of scenarios are identified; the lower constellation was generally associated with common mode failure of the Power Truck Brakes
- Four scenarios were identified to be the dominant risk contributors. All involve a common mode failure and single point failure that incapacitates all 4 axles of the Power Truck FBs
 - Scenario 43 Involves an Additional Failure of 2 TBs
 - Scenario 28 Involves an Additional Failure of 1 TB
 - Scenario 15 Involves the Additional Failure of 2 Center Truck FBs

HKARMS

Risk Management

- Options:
 - Accept the Current Risk Profile
 - Install Independent EM Valve in the FB System to Remove the FB Common Mode Failure
 - Increase Maintenance Frequency to Improve Reliability
 - Design the Train Control System With a Lower GEBR Specification
- Cost-Risk benefit Analyses would be performed to Identify Course of Action

HKARMS

Risk Profile with EMV Inspection Period of 1 Hour – A Health Check Monitor

Conclusion

- A comprehensive risk analysis can provide information on the risk profile
- Scattered diagram have shown to be a good risk communication tool for this exercise
- Risk-informed decision is possible with a risk model

For further enquires, please contact Vincent Ho

