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This short paper addresses the application Bayes’ Theorem in assessing frequency of rare events in 
a QRA. 
 
A key element of risk is randomness (i.e., uncertainty) - not knowing exactly when, where, or if 
damage, or a tragic occurrence is going to happen.  Risk analysis uses various methods of 
modelling, analysis, and evaluation, and thus contains various types of uncertainties.  In general, 
these uncertainties may be attributable to a number of factors, such as:  

 
1. The statistical nature of data,  
2. Insufficient understanding of physical and biological phenomena 
3. Unpredictable events (e.g., natural, biological and human behaviour) 

 
The information derived from a risk analysis may or may not closely reflect reality due to the fact 
that they are predicated on idealized assumptions or conditions.  This information must often be 
inferred from similar (or even different) circumstances or derived through modelling, and thus may 
be in various degrees of imperfection (i.e., uncertainty).  Many problems in risk analysis involve 
natural processes and phenomena that are inherently random, and the states of such phenomena are 
naturally indeterminate and thus cannot be described with definiteness.  Therefore, idealized 
assumptions or conditions containing a certain amount of uncertainties are inferred. 
 
Most rare failure events, such as fires in a complex engineering system, may seldom occur in the 
system’s operating history, we must then use generic databases from other similar systems to 
supplement the lack of system-specific experience.  We must note that it is incorrect to use generic 
database without justification or adjustment.  For example, it is not reasonable to apply the failure 
rate of certain system from UK for a HK system, which, in fact, uses a different design and 
maintenance practice.   
 
Following the Bayesian data update methodology [Ref. 1-3], we would combine both 
system-specific experience, and other system’s experience or generic data.  We should note that no 
previous event occurred in a system does not mean no data.  If we have no failure occur in the past 
20 years in a system, we have a data point saying 0 event in 20 years.  It is very different from no 
data.   
 
Following Reference 1, the Bayes’ Theorem can be used to assessing fire frequency, λ, 
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Where 
π’(λ|Ε)  = posterior distribution, the probability density function of λ given evidence of E 
π(λ)  = prior distribution, the probability density function of λ prior to having evidence of E 
L(E|λ)  = likelihood function, the probability of the evidence given λ  
 
If the likelihood function is modelled by the Poisson distribution and the prior is a gamma 
distribution, then the posterior distribution would also be a gamma distribution.  A gamma 
distribution is  
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where α and β are the two parameters of the distribution.  The posterior distribution will take the 
same form as Equation 2 with parameters: 
 α′   =  α + r;  β′   =  β + T (2.14) 
where  
r  = number of fires in the evidence  
Τ = number of years covered by the evidence 
 
The evidence (r, T) would be the actual system experience.  In typical frequentist calculation, fire 
frequency λ = r/T.  But this process would break down if r=0.   
 
Using equations 1 and 2, we can process data with both system specific experience and generic data 
such that posterior λ =α′/β′.   Thus, an operating history of zero event (r=0) would also lead to a 
meaningful evidence and a posterior λ because it is not likely that α= 0 in the generic database.   
The process can be repeated as necessary if further evidence is available, and there are also other 
techniques to be used to specialise data from expert opinion, pooled data, biased data, incomplete 
data, etc. 
 
Furthermore, several equations might be used to calculate the unavailability of an event in a QRA, 
depending on the circumstances.  For instance, the following equation would be used to calculate 
the failure probability of an operating component without repair in a non-demand failure mode:  
 P  =  1 – e –λ mt  (3) 
Where 
P  = failure probability of basic event 
λ = failure rate per hour 

mt  = mission time expressed in hours 
 
For a standby component with non-demand failure mode and periodic testing, the failure probability 
is  
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Where 
P  = failure probability of basic event 
Τ = average time to repair expressed in hours 
 
For an operating component given to the ability to repair the component, the failure probability is:  
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All these equations require the knowledge of the failure frequency, λ, and Bayes’ Theorem 
(sometimes, two-stages or multi-stages Bayesian update) would be often used to assess the posterior 
λ by combining both system specific experience and generic data. 
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