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Qualitative Definitions of Risk

• Risk is never zero by increasing level of safeguards, as 
long as hazard is present

Safeguards
HazardRisk =

• Without uncertainty or damage, there is no risk
• Anybody can guess extent of damage with different 

levels of uncertainties

DamageyUncertaintRisk ×=

• Classical, but most misleading.  More useful in hazard 
analyses

eConsequencLikelihoodRisk ×=
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Sources of Uncertainties

• Impossible to explicitly enumerate all conditions
• Inadequate or incorrect information on conditions
• Inconsistent interpretation and classification of 

events
• Lack of success data (for number of demands and 

exposure/mission time)
• Limited data sample size; realised risk and 

unrealised risk
• Imperfect mathematical and computer modelling of 

reality
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Uncertainties

• In general, there are three types of uncertainties 
associated with a risk assessment:
– Stochastic uncertainties
– Modelling uncertainties
– Parametric uncertainties

• Strictly speaking, A+A≠2xA
• It is this explicit consideration of uncertainties 

distinguishes a risk assessment from a hazard 
analysis, a PRA from a “QRA”

• Uncertainties are measured by level of belief; i.e., 
probability
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Probability Functions

• The likelihood of an event E is indicated by 
Probability Function P(E)

• The sum of the probabilities of all elementary 
outcomes within sample space S,  P(S) = 1, with 
values between 0 and 1
– P(E) = 1: the event is CERTAIN to occur
– P(E) = 0: the event is certain NOT to occur
– Anything in between represents our level of belief of 

the certainty or uncertainty of an event to occur
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The Laws of Probability

• The probability of any event A is 0 ≤ P(A) ≤ 1
• Law of Addition: P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

• Law of Multiplication: P(A ∩ B) = P(A) x P(B)

AA BB A and B
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Law of Multiplication

• Actually,  P(A ∩ B) = P(B) x P(A|B)
where P(A|B) is probability of A given B has occurred

• If A and B are statistically independent, 
– P(B|A) = P(B), then
– P(A ∩ B) = P(A) x P(B|A) = P(A) P(B)

AAA

A∩BAA∩∩BB

BBB
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Bayes’ Theorem

• Bayes’ Theorem is a trivial consequence of the definition 
of conditional probability, but it is very useful in that it 
allows us to use one conditional probability to compute 
another

• Given that A and B are events in sample space S, and P(B) 
≠ 0, conditional probability is defined as:
– P(A ∩ B) = P(A|B) P(B)
– P(A ∩ B) = P(B|A) P(A) 
– P(B|A) P(A) = P(A|B) P(B)

P(A)
B)P(A 

P(A)
P(A|B)P(B)ABP ∩

==)|(
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Probability vs Frequency

• Frequency is a measure of the rate of occurrence.  E.g., 
failure rate of a pump is 6.2x10-3/hr

• Probability is a measure of the level of belief, a fraction, or 
failure per demand. It is dimensionless.  E.g., the failure 
rate of the pump is

Frequency Probability
1.0x10-4/hr 0.2
2.0x10-3/hr 0.5
3.2x10-3/hr 0.2
4.5x10-2/hr 0.1

with a mean of 6.2x10-3/hr
• The parameter failure rate is denoted as λ, and  the 

probability of the failure rate is P(λ = 1.0x10-4/hr) = 0.2
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Uncertainties Based on Evidence

• In general, two approaches to estimate 
parameters:
– Frequentist

• Based only on observed data and an adopted model
• Characterized by scientific objectivity

– Bayesian
• Appropriately combining prior intuition or knowledge with 

information from observed data
• Characterized by subjective nature of prior opinion

• Each approach is valid when applied under 
specific circumstances

• Neither approach uniformly dominates the other
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Frequentist Statistics 

• Relative frequency λ: proportion of times an 
outcome occurs

• For  N→∞, the relative frequency tends to 
stabilize around some number: probability 
estimates

• Frequentist statistics will completely break 
down if no data or no experience history (N =0)
– New technology
– Rare events
– No failure record

(N) trialsofnumberTotal
trialsuccessfulofNumber

=λ
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Bayesian Statistics

• Bayesian statistics measures degrees of belief by 
using intuition knowledge (prior belief), updating 
it by evidence (likelihood) to obtain a posterior 
belief P(B|A) = P(A|B)*P(B) / P(A)

• To process knowledge
P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

Posterior ∝ likelihood x prior

basically a normalizing constant

p (θj⏐data) = p (data⏐θj) p (θj) / Σ p (data⏐θi) p (θi) 
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posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

The likelihood of seeing 
evidence given prior

normalization involves summing 
over all possible hypotheses

Bayesian Statistics

• In a QRA, we know what the damage effects and 
their contributing factors are, we want to know 
the likelihood of the contributing factors

∫
∞

=

0

)|()(

)|()(
)|('
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How Many Defects in a
Population of 100 Components?
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State of Knowledge after Various 
Samples
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State of Knowledge after Various Sample 
Results With Defects Found
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Typical Shapes of Probability Functions for 
Prior, Likelihood and Posterior

Prior

Likelihood

Posterior
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Application Example- Fire Frequency of a 
Complex Engineering System 

• Model the likelihood function by the Poisson 
distribution and the prior by a gamma distribution 
(conjugate of Poisson)

• Then the posterior distribution is also a gamma 
distribution

• A gamma distribution (α, β) is 

βλα
α

λ
α

βλπ −−

Γ
= e1

)(
)(
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Application Example- Fire Frequency of 
a Complex Engineering System 

• Evidence is Poisson (r, T) where 
r = number of fires in the system being analysed
T = number of years covered by the system 

• Frequentist will show fire frequency λ = r/T, but the 
process will break down if r =0

• Prior, gamma (α, β), is based on generic experience 
• Then the posterior distribution is gamma (α’, β’) where  

α′ =  α + r;  β′ =  β + T
• Bayesian update can ensure a meaningful set of data being 

used with λ = α′ / β’ , even r=0
• Prior is usually obtained by another set of Bayesian operations
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Probability Curves for Fire Frequency 
(Example)
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Posterior Distribution of Fire 
Suppression Time (Example)



www.hkarms.org 22

Properties of Bayesian Updating

• Need to estimate Prior and obtain the 
appropriate  evidence
– With weak evidence, prior dominates results
– With strong evidence, results insensitive to prior 

(dominated by evidence)
– Successive updating gives same result as one-

step updating with consistent evidence
• Provide a robust method in assessing 

initializing event frequency, failure rates, event 
tree split fractions
– Drawn on generic experience 
– Plant specific data (including no failure)
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Bayes’ Theorem Example
Suppose we have a new untested system.  We estimate, based on prior 
experience, that 80% of chance the reliability (probability of successful 
run) R1 = 0.95, and 20% of chance that R2 = 0.75.    We run a test and find 
that it operate successfully.  What is the probability that the reliability 
level is R1.

Si = event “System test results in a success”

=0.8*0.95/(0.8*0.95 + 0.2*0.75) = 0.835 (updated from 0.8)

)R|P(S )P(R  )R|P(S )P(R
)R|P(S )P(R  )S|P(R

212111

111
11

+
=

Now, let’s assume that a second test is also successful

=0.835*0.95/(0.835*0.95 + (1-0.835)*0.75) 
=0.79325/(0.79325+0.12375)=0.865

)R|P(S )P(R  )R|P(S )P(R
)R|P(S )P(R  )S |P(R

222121

121
21

+
=

Mean = 0.95*0.8+0.75*0.2 = 0.91

0.20.75

0.80.95

PR

Prior Distribution

Mean = 0.917

1-0.835 = 0.1650.75

0.8350.95

PR

Posterior Distribution

Mean = 0.923

1-0.865 = 0.1350.75

0.8650.95

PR

2nd Posterior Distribution

What is P(R1|S3) if the S3 is a failure?
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Bayes’ Theorem Example

S3 = event “System test results in a failure”

)R-1|P(S )R-P(1  )R-1|P(S )R-P(1
)R-1|P(S )R-P(1  )S|)R-P(1

232131

131
31

+
=

P(1-R1|S3)= 0.865*0.05/(0.865*0.05 + (1-0.865)*0.25) 
=0.04325/(0.04325+0.03375)=0.562

Mean = 0.95*0.8+0.75*0.2 = 0.91

0.20.75

0.80.95

PR

Prior Distribution

Mean = 0.917

1-0.835 = 0.1650.75

0.8350.95

PR

Posterior Distribution | S1

Mean = 0.077

1-0.865 = 0.1350.25

0.8650.05

P1-R

Posterior Distribution |S2

Mean = 0.923

1-0.865 = 0.1350.75

0.8650.95

PR

Posterior Distribution |S2

Mean = 0.8624

1-0.562 = 0.4380.75

0.5620.95

PR

Posterior Distribution |S3
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Bayes’s theorem
• Let us recall Bayes’s theorem:

• Where f(θ) is density of the prior probability distribution for parameter(s) of 
interest, f(x|θ) is density of conditional probability distribution for x given θ, 
f(θ|x) is posterior density of the distribution of the parameter of interest - θ.  
Integral is the normalisation coefficient that ensures that integral of 
posterior is equal to 1.

• Bayesian estimation is fundamentally different from the maximum likelihood 
estimation. In maximum likelihood estimation parameters we want to 
estimate are not random variables. In Bayesian statistics they are. 

• Prior, likelihood and posterior have the following interpretations:
• Prior: It reflects the state of our knowledge about the parameter(s) before 

we have seen the data. E.g. if this distribution is sharp then we have fairly 
good idea about the parameter of interest.

• Likelihood: How likely it is to observe current observation if parameter of 
interest would have current value. 

• Posterior: It reflects the state of our knowledge about the parameter(s) after 
we have observed (and treated) the data.

∫
∞

∞−

=
θθθ

θθθ
dxff

xffxf
)|()(

)|()()|(
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Bayes’s theorem and learning

• Bayes’s theorem in some sense reflects dynamics of learning and accumulation of the 
knowledge. Prior distribution encapsulates the state of our current  knowledge. When we 
observe some data then they can change our knowledge. Posterior distribution reflects it. 
When we observe another data then our current posterior distribution becomes prior for 
this new experiment. Thus every time using our current knowledge we design experiment, 
observe data and store gained information in the form of new prior knowledge. Sequential 
nature of Bayes’s theorem elegantly reflects it. Let us assume that we have prior
knowledge written as f(θ) and we observe the data - x. Then our posterior distribution will 
be f(θ|x). Now let us assume that we have observed new independent data y. Then we 
can write Bayes’s theorem as follows:

• Last term shows that posterior distribution after observing and incorporating information 
from x is now prior for treatment of the data y. That is one reason why in many Bayesian 
statistics book priors are written as f(θ|I), where I reflects the information we had before 
the current observation. If data are not independent then likelihood becomes conditional 
on parameter and on the previous data.

• One more important point is that prior is different from a priori. Prior is knowledge available 
before this experiment (or observation) a priori is before any experiment. In science we do 
not deal with the problem of knowledge before any experiment.

∫∫∫
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Prior, likelihood and posterior

• Before using Bayes’s theorem as an estimation tool we should have the forms of prior, 
likelihood and posterior. 

• Likelihood is usually derived or approximated using physical properties of the system 
under study. Usual technique used for derivation of the form of the likelihood is central 
limit theorem. 

• Prior distribution should reflect state of knowledge. Converting knowledge into distribution 
could be a challenging task. One of the techniques used to derive prior probability 
distribution is maximum entropy approach. In this approach entropy of distribution is 
maximised under constraint defined by the available knowledge. Some of the knowledge 
we have, can easily be incorporated into maximum entropy formalism. Problem with this 
approach might be that not all available knowledge can easily be used, Another approach 
is to study the problem, ask experts and build physically sensible prior. One more 
approach is to find such prior that when used in conjunction with the likelihood they give 
easy and elegant forms for posterior distributions. These type of priors are called 
conjugate priors. They depend on the form of likelihood. Here is the list of some of 
conjugate priors used for one dimensional cases:

• Likelihood                 Parameter             Prior/Posterior
• Normal                      mean (μ)                             Normal
• Normal                    variance (σ2)                    Inverse gamma
• Poisson                         λ Beta
• Binomial                        π Gamma
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Importance of prior distributions

• One of the difficult (and controversial) parts of the Bayesian statistics is finding prior and 
calculating posterior distributions. Convenient priors can easily be incorporated into 
calculations but they are not ideal and they may result in incorrect results and 
interpretation. If prior knowledge says that some parameters are impossible then no 
experiment can change it. For example if prior is defined so that values of the parameter 
of interest are positive then no observation can result in non 0 probability for negative 
values. If some values of the parameter have extremely small (prior) probability then one 
might need many, many experimental data to see that these values are genuinely possible. 

• Bayesian statistics assumes that probability distribution is known and it in turn involves 
integration to get the normalisation coefficient. This integration might be tricky and in many 
cases there is no analytical solution. That was main reason why conjugate prior were so 
popular. With advent of computers and various integration techniques this problem can 
partially be overcome. In many application of Bayesian statistics prior is tabulated and 
then sophisticated numerical integration techniques are used to derive posterior 
distributions. 

• Popular approximate integration techniques used in Bayesian statistics involve: Gaussian 
integration, Laplace approximation, numerical integration based on stochastic approaches 
(Monte-Carlo, Gibbs sampling, Markov Chain Monte Carlo).
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