

Ninth International Probabilistic Safety Assessment and Management Conference An ISAPSAM Conference 18-23 May 2008 Hong Kong, China

> Design and testing of innovative composites for passive fire protection

<u>Gabriele Landucci^{1*}, Francesco Rossi²,</u> Cristiano Nicolella¹, Severino Zanelli¹

¹ Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Università di Pisa, Italy

² Consorzio Polo Tecnologico Magona, Italy

INTRODUCTION

Introduction

- Ignition of accidental releases may trigger the escalation of the domino effect, involving process equipment
- More severe consequences if pressurized gases are involved
- Past accident data analysis: external fire is a common primary cause for mechanical explosions and fireballs (MHIDAS DATABASE)

INTRODUCTION

Passive fire protection systems

- Consequences mitigation is crucial for safety based design: passive fire protection (PFP)
- Thermal shields and equipment insulating coating are reliable and simple solutions
- Design and testing of PFP materials is critical: implementation of innovative materials

DICCISM Università di Pisa

CPTM Consorzio Polo Tecnologico Magona

Dacal	fibor					
Dasait iiber		Thermal Properties	SI Units	Basalt Filaments	Fiberglass	Silica filaments
% in		Maximum application temperature	(K)	1255	923	1640 - 2070
Compound	basalt rocks	Sustained operating	(K)	1093	753	1470
SiO ₂	49.58	temperature				
TiO ₂	2.08	Minimum operating temperature	(К)	15	210	100
Al ₂ O ₃	14.48					
Fe ₂ O ₃	4.42	Thermal conductivity	(W/m K)	0.035	0.034-0.04	0.035-0.04
FeO	9.43	Melting temperature	(K)	1720	1390	2070
K ₂ O	1.89					
Na ₂ O	2.1	Thermal	(1/K)	8.0E-06	5.4 E-06	0.05 E-06
MgO	5.1	coefficient				
CaO	8.5	Qualitative price		\$	\$	\$\$\$\$
MnO	0.17	Comparison				

N PLATFORM

Aims:

- Design and production of innovative composites for passive fire protection (PFP)
- Development of a small scale fire test for thermal characterization of PFP materials
- Comparison between innovative and commercial materials for thermal insulation

New materials for PFP: basalt fibers

Reference standards for fire tests

- ASTM and other standard are devoted to the determination of flame spread among surfaces
- A more detailed analysis o jet fire impingement are ne
- Material testing in more se conditions and heat expos

Experimental set up

Experimental set up scheme

1) Tested specimen; 2) Bearing structure; 3) Gas storage cylinder; 4) Pressure regulation valve;

5) Manometer; 6) Flow indicator; 7) block valve; 8) regulation valve; 9) welding torch; 10) burner support;

11) Thermocouples and data logger; 12) IR camera; 13) computer connection and data collecting

Presentation of results (1)

Different materials were considered and compared. Different criteria were used for the comparison:

- 1. Maximum wall temperature: thermal insulation effectiveness
- 2. Weight losses: material loss during the fire exposure; definition of a synthetic index
 - 3. (Eventual) rupture time: material resistance to the fire impingement.

DICCISM Università di Pisa

The index is aimed to consider the geometrical features of the panels and not only the relative weigh loss

Presentation of results (2)

les positioning anel

Presentation of results

Basalt based materials present lower temperatures

DICCISM Università di Pisa

Temperature profiles (2)

Infrared camera registrations – front of the panel

1159,0°C

After the initial exposition the high temperature zone among the basalt panel is restricted

Weight losses

Material	Maximum wall temperature (°C)	Average wall temperature (°C) (after 15 min test)	Time for rupture (min)	Weight loss (%)	Weight loss index I (g/L)
Panel a	478	438	-	< 10	160÷180
Panel b	385	375	-	≈ 10	60÷80
Panel c	494	485	20	≈ 15	pprox 220
Panel d	701	680	5	≈ 4	40

- Basalt based panels presented no rupture after 30 minutes
- Weight loss index is greater in the case of organic matrixes due to resin combustion
 - \Box A more detailed analysis is required: TGA

Presentation of results

TGA for organic materials

Micro-structure analysis (SEM)

SEM images for basalt fibre panels with organic matrix.

- Fibres result damages only close to the flame impact zone;
- Good thermal resistance

DICCISM Università di Pisa

Conclusions

- Innovative composite materials for passive fire protection have been developed
 - □ based on basalt fibers
 - □ Organic and inorganic matrix
- Small scale jet fire test aimed to the lab characterization at high temperatures severe conditions
 - □ Comparison between different materials, innovative and commercial
 - Temperatures profiles were determined with thermocouples and IR camera measurements.
 - □ Weight losses, TGA, SEM
- Basalt based panels showed better thermal behaviour, lower weight losses, due to the surface flame propagation, and full structure integrity.

The authors gratefully acknowledge the financial support of the Italian Ministry for University and Research under the research contract FISR 264Ric/05.

Ninth International Probabilistic Safety Assessment and Management Conference An ISAPSAM Conference 18-23 May 2008 Hong Kong, China

Thank you for your attention

Any question?