

Research & Consultancy

Further development of a causal model for air transport safety (CATS): the complete model

B.J.M. Ale Risk Centre TU-Delft, Delft, The Netherlands **L.J. Bellamy** White Queen BV, Hoofddorp, The Netherlands **R. van der Boom**

Ministry of Transport and Waterworks, The Hague, The Netherlands

O. Morales

P.H. Lin

R.M. Cooke L.H.J. Goossens

A.R. Hale D. Kurowicka TU-Delft, The Netherlands

A.L.C. Roelen *NLR, Amsterdam, The Netherlands*

J. Cooper JPSC consultants, London, UK J. Spouge DNV, London, England

Outline

- Introduction
- Model constituents
- •Data
- •Uncertainties
- •Advantage of Bayesian Belief Nets
- Conclusion

Introduction

Model constituents

Example scenario: contaminated wing

Research & Consultancy

K.

Research & Consultancy

Scenario events are further detailed

Fault Tree Influence Diagram

Fault trees

Influence diagrams

Air Traffic Controller performance

One integrated BBN

P(B)

Model quantification

Quantification = Unconditional and conditional probability distributions

Probabilities are expressed per flight

 \Rightarrow requires denominator data

of occurrences

numerator

of flights

denominator

Data configuration control

Origin and quality of the data are held in a separate database:

CATS PArameters With Sources [CATSPAWS]

Uncertainties

•Epistemic (lack of knowledge)

•Aleatory (randomness of input parameters)

Uncertainty in risk assessment of socio-technical system is largely aleatory

=> Uncertainty is reduced by better assessment techniques

Research & Consultancy

Advantage of Bayesian Belief Nets

Events can have multiple states

• Example: Fatigue

Degree of Sleepiness	Scale
	Rating
Feeling active, vital, alert, or wide awake	1
Functioning at high levels, but not at peak; able to concentrate	2
Awake, but relaxed; responsive but not fully alert	3
Somewhat foggy, let down	4
Foggy; losing interest in remaining awake; slowed down	5
Sleepy, woozy, fighting sleep; prefer to lie down	6
No longer fighting sleep, sleep onset soon; having dream-like thoughts	7

Interdependencies are an integral part of the model

The complete model (so far)

Preliminary results

BBN Node	Baseline risk	Crosswind > 15 kts	Crosswind > 15 kts	Crosswind < 15 kts	Crosswind < 15 kts
		Dry	Rain	Dry	Rain
Runway overrun (landing)	1.0	2.8	185.8	0.7	182.6
Runway veer-off (landing)	1.0	5.1	152.1	0.8	149.2

Conclusion

User test phase starts this year.

Expected and unexpected outcomes will be carefully evaluated.