Human Factors Considerations in Station Planning & Design

Philip Leung Civil & Building Engineering Manager

Background

Station Planning

Station Capacity

Computational Simulation

Operations Organization

What is Human factor?

- Focuses on health and safety, the UK Health and Safety Executive (HSE) defines HF as:
 "The environmental, organizational and job factors, and human individual characteristics which influence behaviour at work in a way can affect health and safety."
- Three main groups of factors

To achieve good performance we need to optimise the influences on behaviour

- The job what are people being asked to do and under what circumstances? (e.g. the task, workload, working environment, procedures, displays and controls).
- The individual who is doing it? (e.g. their competence, skills, personality, attitudes, and risk perception).
- The organisation how is the work organised? (e.g. leadership, resources, work pattern, planning, communication, and culture)

Consider each interface

Norking

Norkstation,

Nachine

10n

Can procedures be followed in the workplace? Is there time pressure? What working hours or breaks? What training is given? What level of supervision is there?

Is there good: working culture?, leadership? motivation?

Can people reach everything? Is there enough space to work? Are there obstructions? Can a good working posture be achieved?

Does a person need: good vision/hearing, strength. particular skills, personality traits?

Organisation work patterns

Individual

attitudes

skills, personali

risk perceptio

Job

task, workload

display and controls

environment.

procedures

Is the machine/tool easy to use? Is it available where it is needed? Does the interface meet expectations?

> 12/21/2011 Page 6

Human Factors Considerations in Station Planning and Design

- Increasing Crowdedness
- Station Capacity
- Disabled and Aging Passengers
- Escalators Safety
- Fire Safety and Evacuation

Virtual Design and Construction

Virtual Design and Construction ADM Enabling Works for South Island Line

Virtual Design and Construction Services Clash Analysis

Virtual Design and Construction CCTV Coverage Test & Signage Visibility Simulation

12/21/2011 Page 11

Virtual Design and Construction Daylight Simulation

Kowloon Bay Station

Shadow Range Study 12th day of June 9:00am to 7:30pm

Virtual Design and Construction Thermal Comfort Analysis – Radiation Analysis

Kowloon Bay Station

Daily Average Radiation 12th day of June 9:00am to 7:30pm

Virtual Design and Construction Fire Simulation

Virtual Design and Construction Passenger Flow Simulation

Station Planning and Design

Factors affecting passenger flow in stations

- Walking Speed
- Familiarity with Stations
- Passenger Flow within Stations
 - Counterflow
 - Crossflow
- Waiting passengers and queues
- Trip Purposes
- Luggage

Relationship between Flow, Density and Walking Speed

Passenger Flow
Rate (q)= Density (k) * Walking Speed (u)

(Pax/min/m) (Pax/m²)

(m/min)

In reality, passengers' walking speed is a function of their density

 \Rightarrow

q = k * F(k)

Fundamental Diagram

12/21/2011

Fruin: Level of Service Standard

A Normal walking speed can be freely selected & slower pedestrians can be easily overtaken. Crossing conflicts can be easily avoided.

B Restricted walking speed; overtaking slower pedestrians is difficult. Counter-flows & crossing movements severely restricted. Some probability of reaching critical density causing temporary stoppages.

C Restricted ability to select normal walking speed & freely pass others. High probability of conflict where crossing movements & counter-flows exist. Conflict avoidance requires frequent adjustment of walking speed & direction. Flow is reasonably fluid, however considerable friction & interaction between pedestrians is likely to occur.

D Restricted walking speed; overtaking slower pedestrians is difficult. Counter-flows & crossing movements severely restricted. Some probability of reaching critical density causing temporary stoppages.

E Walking speed & passing ability is restricted for all pedestrians. Forward movement is possible only by shuffling. Counter-flows & crossing movements extremely difficult. Flow volumes approach limit of walking capacity.

F Severely restricted walking speed; frequent unavoidable contact with others; reverse or cross movements are virtually impossible. Pedestrian flow is sporadic & unstable.

Source: Pedestrian Planning and Design, John J. Fruin, 1987

Design Capacity in NWDSM

		Maximum Practical Capacity (MPC)	Design Factor 0.8 (Normal)	Design Factor 0.6 (New Station)	Design Factor 0.9 (Emergency)
Escalator (spe	ed 0.75 m/s)	150	120	90	135
Stair (Uni-	Up	63	50	37	56
directional)	Down	70	56	42	63
Stair (Bi- directional)	Up	50	40	30	-
	Down	56	44	33	-
Decesso	Uni- directional	88	70	52	79
Passage	Bi- directional	70	56	42	-
AFC Gates (Turnstile Gate)		35	28	-	-

MTR's Level of Service Standard

Fr	uin Level of Se	ervice Standard			Design Stand	dard Per	son / sq. m.
	LOS	А	В	С	D	Е	F
	Walkway	<0.31	0.31-0.43	0.43-0.72	0.7-1.1	1.1-2.2	>2.2
	Queuing	<0.82	0.8-1.1	1.1-1.5	1.5-3.6	3.6-5.6	>5.6
	Staircase	<0.54	0.54-0.72	0.7-1.1	1.1-1.5	1.5-2.7	>2.7

New Works Design Standard

LOS		Good	Acceptable	Undesirable
Escalator	At concourse & entrance levels	No Waiting	0 - 15 sec.	Exceed 15 sec.
	At Platform	No Waiting	0 - 30 sec.	Exceed 30 sec.
TIMs, TMs, AVMs		No Waiting	0 - 30 sec.	Exceed 30 sec.
AFC Gates		No Waiting	0 - 10 sec.	Exceed 10 sec.
Lifts		No Waiting	0 - 30 sec.	Exceed 30 sec.
Journey	From Entrance to Platform	0 – 3 minutes	3 - 6 minutes	Exceed 6 min.
Time	For Interchange	0 – 3 minutes	3 - 6 minutes	Exceed 6 min.

MTR's Classification of Congestion

Classification	Definition	Action Required
CG1 – Safety Compromised Level	Crowding at critical location, duration, and situation that has safety concern	Condition at which service level must be reduced
CG2 – Alert Condition Level	Congestion level that the passenger flow efficiency starts to drop	Permanent crowd control to be put in place by operator. Commission works on congestion work.
CG3 – Sub-standard Customer Service Level	Congestion level that impede passengers' usual walking speed and step length	Intermittent crowd control to be put in place by operator. Commission studies on congestion relief schemes
CG4 – Target Customer Service Level	Congestion level that passengers can move at their unimpeded speed and step length	Maintain through station management action.

MTR's Overall Travelling Time Calculation

OVERALL TRAVELLING TIME CALCULATION FROM ENTRANCE TO PLATFORM:

 $T = t_1 + Q_1 + t_2 + Q_2 + t_E + t_3$

where

- T = Overall Travelling time
- t = Travelling time of a given distance, based on 1.35 m/s, or D / 1.35, where D = distance
- t_E = Travelling time at escalator, based on 0.75 m/s*, or (2R+3+2) / 0.75, where R = floor-to-floor height
- Q = Desirable queuing time (max.) 10 seconds for AFC gates* 15 seconds for escalator*

MTR Corporation

Passenger Flow Data

KOB Demand Variations & Growth

Passenger Profile

Passenger Flow Characteristics (Weekdays)

Passenger Flow Characteristics (Weekdays)

Passenger Flow Characteristics (Weekdays)

Passenger Flow Characteristics (X'mas Eve)

Station Capacity

Station Capacity Measurement

Platform

Station Capacity (KOB)

Station Capacity (KWT)

Platform

Entry Capacity (ppm) of Facilities

312

Exit Capacity (ppm) of Facilities

Station Capacity (1)

Station Capacity (2)

Passenger Waiting Time at Escalator Landings

Escalator Throughput

Escalator Throughput

Passenger Flow Characteristics (MOK)

Walking Speed

MTR's Assumed Walking Speed for Station Design

Speed (m/s)

MTR Corporation

Passenger Walking Speed - Mong Kok (MOK)

Passengers groups	Minimum speed [m/s]	Maximum speed [m/s]	Average speed [m/s]	Standard deviation [m/s]
Male	0.63	4.22	1.28	0.39
Female	0.54	2.03	1.21	0.25
Elderly	0.54	1.65	1.08	0.27
Children	0.75	3.14	1.24	0.41
Disabled	0.54	1.54	0.94	0.29
Passengers with luggage	0.92	1.82	1.26	0.22

Passenger Walking Speed - Mong Kok (MOK)

Passengers groups		Minimum speed [m/s]	Maximum speed [m/s]	Average speed [m/s]	Standard deviation [m/s]
Mala	AM	0.63	3.14	1.36	0.39
IVIAIC	PM	0.74	4.22	1.22	0.39
Eamola	AM	0.70	2.03	1.35	0.30
remate	PM	0.54	1.70	1.09	0.20
Elderly	AM	0.63	1.65	1.14	0.29
	PM	0.54	1.21	1.00	0.23
Children	AM	0.75	3.14	1.27	0.47
Cinidien	PM	0.78	1.76	1.19	0.26
Dischlad	AM	0.79	1.28	1.01	0.22
Disabled	PM	0.54	1.52	0.90	0.33
Passengers with	AM	0.92	1.82	1.26	0.25
luggage	PM	1.09	1.36	1.25	0.10

Passenger Walking Speed - Mong Kok (MOK)

Area	Minimum speed [m/s]	Maximum speed [m/s]	Average speed [m/s]	Standard deviation [m/s]
Walkway	0.54	4.22	1.17	0.25
Ramp	0.29	3.71	0.96	0.25
Stair (Upward)	0.15	1.88	0.52	0.23
Stair (Downward)	0.25	1.67	0.70	0.19

Passenger Walking Speed

Station	Minimum speed [m/s]	Maximum speed [m/s]	Average speed [m/s]	Standard deviation [m/s]
Mong Kok (MOK)	0.54	4.22	1.17	0.25
Kwun Tong (KWT)	0.43	0.92	1.02	0.26
Kowloon Bay (KOB)	0.42	2.45	1.05	0.21
Kowloon Tong (KOT)	0.58	3.47	1.16	0.25
Wanchai (WAC)	0.41	2.45	1.03	0.24
Admiralty (ADM)	0.54	2.84	1.16	0.21

Passenger Walking Speed

	Mean	Standard	
	speed	deviation	Location
Source	(m/s)	(m/s)	Location
CROW (11)	1.4		Netherlands
Daamen (10)	1.41	0.215	Netherlands
Daly et al. (12)	1.47		United Kingdom
FHWA (13)	1.2		United States
Fruin (9)	1.4	0.15	United States
Hankin and Wright (14)	1.6		United Kingdom
Henderson (15)	1.44	0.23	Australia
Hoel (16)	1.50	0.20	United States
Institute of Transportation Engineers (17)	1.2		United States
Knoflacher (18)	1.45		Austria
Koushki (19)	1.08		Saudi-Arabia
Lam et al. (20)	1.19	0.26	Hong Kong
Morrell at al. (21)	1.25		Sri Lanka
(21)	1.4		Canada
Navin and Wheeler (22)	1.32		United States
O'Flaherty and Parkinson (23)	1.32	1.0	United Kingdom
Older (24)	1.30	0.3	United Kingdom
Pauls (25)	1.25		United States
Roddin (26)	1.6		United States
Sarkar and Janardhan (27)	1.46	0.63	India
Sleight (28)	1.37		United States
Tanariboon et al. (29)	1.23		Singapore
Tanariboon and Guyano (30)	1.22		Thailand
Tregenza (31)	1.31	0.30	United Kingdom
Virkler and Elayadath (32)	1.22		United States
Young (<i>33</i>)	1.38	0.27	United States
Estimated overall average	1.34	0.37	

Station Simulation

Station Capacity Measurement

Concourse (AM)

Platform (AM)

Path Selection Model

Evaluate the weighting (attraction effect) between the gates and the escalators / stairs by using Artificial Neuron Network (ANN) model.

Flow model

Pedestrian movement rules

Pedestrian area

Potential collision detection

Collision with Walls

Passenger Flow Simulation

Passenger Flow Simulation

12/21/2011 P

Page 55

Entrances may be blocked by pedestrians during rainy days

Works in Progress – Transport Modelling

Passenger Flow at Station Entrances

7. Weekday Entrance Pedestrain Flow

	No.	of Pedestr	Estimate Daily		
	Morning	Off	Evening	No. of	% Over
Direction/	Peak	Peak	Peak	Pede-	Station
Entrance	Hour	Hour	Hour	strains	Total
Towards M	ΓR				
A	379	1327	2730	18330	16.2%
в	64	412	588	4557	4.0%
С	735	877	1792	15908	14.1%
D1	268	450	1128	7870	7.0%
D2	698	288	696	9125	8.1%
D3	N.A.	577	1081	9567	8.5%
D4	N.A.	382	568	5728	5.1%
Е	1098	1380	2871	24709	21.9%
F	1544	2505	7450	47425	42.0%
DL1	59	129	265	1956	1.7%

From MTR

A	1800	909	2860	21425	16.2%
в	225	376	755	5526	4.2%
С	1513	607	1610	14858	11.3%
D1	644	523	1325	9818	7.4%
D2	116	276	599	3963	3.0%
D3	N.A.	832	2212	17258	13.1%
D4	N.A.	377	487	5810	4.4%
Е	1671	1465	4056	27828	21.1%
F	4255	1824	4245	41859	31.7%
DL1	97	93	134	1407	1.1%

Development near MTR Stations

Station Planning Passenger Flow Simulation

Station Planning Station Planning Portal

😝 Internet | Protected Mode: On 🦸 🔹 🔍 100% 🔹

Station Planning Transport Modelling

12/21/2011 Page 64