#### Bayesian Modeling of Population Variability: Practical Guidance and Pitfalls

*PSAM-9 May 2008* 

Dana Kelly Idaho National Laboratory Dana.Kelly@inl.gov

Corwin Atwood Statwood Consulting cory@statwoodconsulting.com

# Outline

- Overview of hierarchical Bayes for population variability
- Convergence problems
  - Diagnosing problems
  - Reparameterizing to avoid problems
- Sensitivity to choice of first-stage prior
  - Problems with conjugate priors when variability is large
  - Use of nonconjugate first-stage prior
  - Choosing hyperpriors
- Conclusions



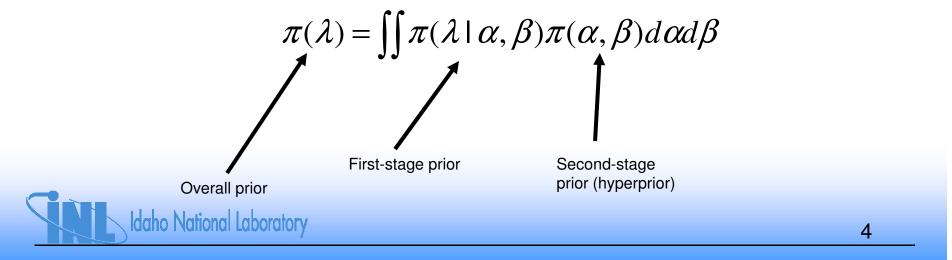
# Modeling Population Variability via Hierarchical Bayes

- Want to use information from more than one source to estimate parameters, such as p or  $\lambda$
- It may be possible that we cannot pool information as estimates from disparate sources might differ significantly
- Use hierarchical Bayes analysis to develop population variability curve (PVC)
  - Represents source-to-source variability in parameters of interest
  - Uses hierarchical prior, specified typically in two stages

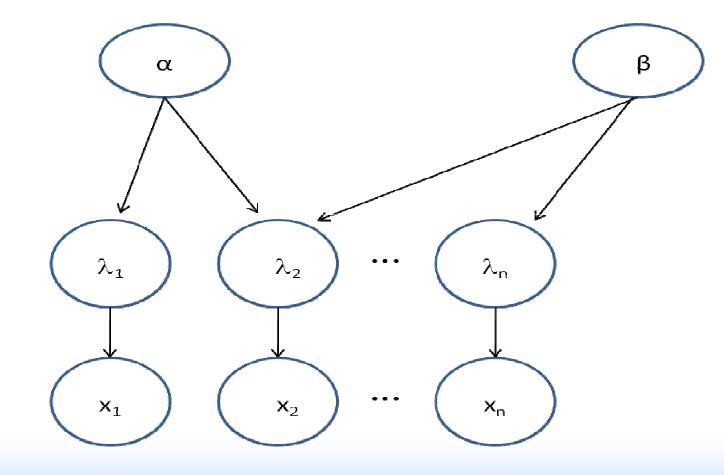


# **Hierarchical Priors**

- Bayesian approach is to specify prior in stages (hierarchies)
  - First stage is  $gamma(\alpha, \beta)$  prior for  $\lambda_i$  (or other functional form)
  - Second stage is joint prior  $\pi(\alpha, \beta)$ 
    - Called hyperprior
    - $\alpha$ ,  $\beta$  called hyperparameters
    - Often use diffuse (noninformative) independent priors for hyperparameters
  - Two stages typical, but can model three or more



### **Bayesian Network Formulation of Problem**



Idaho National Laboratory

### First Example: Loss of Offsite AC Power

• Data taken from NUREG/CR-5496

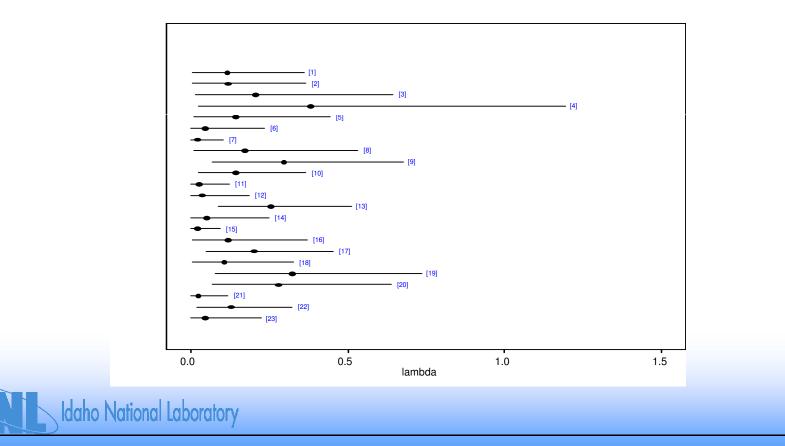
| Events | <b>Exposure time</b> | Events | Exposure Time |
|--------|----------------------|--------|---------------|
|        | (yr)                 |        | (yr)          |
| 1      | 13.054               | 5      | 21.5          |
| 1      | 12.77                | 0      | 10.075        |
| 1      | 7.22                 | 0      | 26.32         |
| 1      | 3.944                | 1      | 12.54         |
| 1      | 10.548               | 3      | 17.5          |
| 0      | 10.704               | 1      | 14.3          |
| 0      | 24                   | 3      | 10.89         |
| 1      | 8.76                 | 3      | 12.5          |
| 3      | 11.79                | 0      | 21.38         |
| 2      | 17.5                 | 2      | 19.65         |
| 0      | 20.03                | 0      | 11.34         |
| 0      | 13.39                |        |               |



Idaho National Laboratory

### Side-by-Side Interval Plot Illustrates Plant-to-Plant Variability

• 95% credible intervals from update of Jeffreys prior for each plant



7

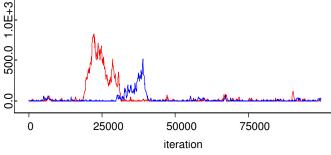
## **Hierarchical Bayes Model for LOSP Data**

- Will use gamma first-stage prior
- Independent diffuse hyperpriors on first-stage gamma parameters
- Will run two MCMC chains
  - Initial values selected by finding empirical Bayes estimates of gamma parameters
    - Starting values dispersed around EB estimates to obtain good coverage of joint posterior distribution



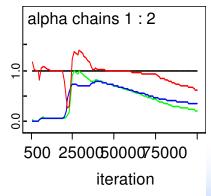
### **Illustration of Convergence Problems**

Plot of first 100,000 iterations shows poor mixing of chains



- Brooks-Gelman-Rubin (BGR) convergence diagnostic confirms lack of convergence
  - Red line should be near 1.0
  - Blue/green lines not stable

Idaho National Laboratory



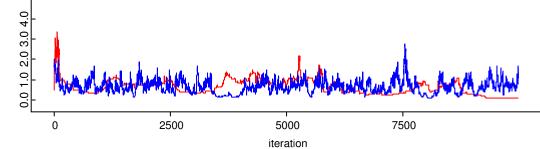
### **Convergence Problems Can Arise from Highly Correlated Parameters**

- Rank correlation coefficient for gamma parameters is 0.98
- Reparameterize gamma first-stage prior in terms of "independent" parameters
  - Use mean =  $\alpha/\beta$  and coefficient of variation = std.dev./mean =  $\alpha^{-0.5}$
  - Use independent diffuse hyperpriors on mean and CV

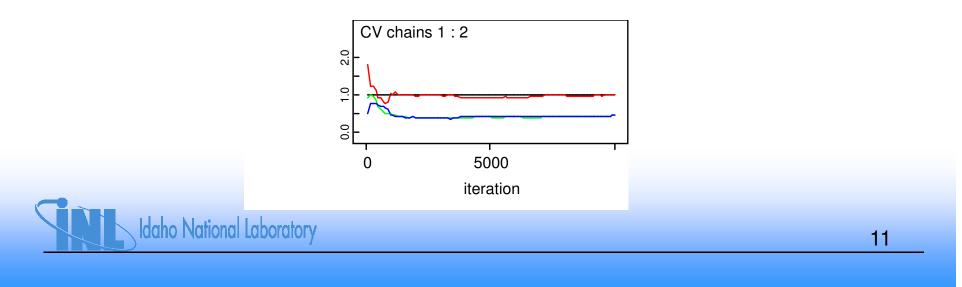


### **Convergence Results with Reparameterized Model**

 History for first 10,000 iterations shows chains well mixed

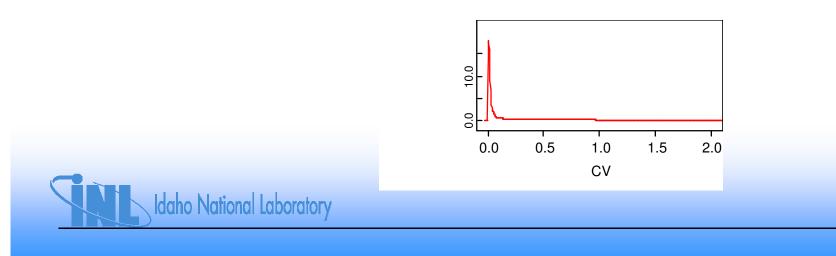


• BGR diagnostic shows no problems



# **Results for Reparameterized Model**

- *Mean is 0.09/yr*
- 90% credible interval is (0.02, 0.20)
- Numerically close to EB results
  - Expected as variability is not too large
  - Illustrated by marginal posterior distribution for CV, which is peaked at small values



## **Sensitivity to Choice of First-Stage Prior**

- Re-analyze first example with lognormal first-stage prior
  - Use independent diffuse hyperpriors on lognormal parameters
- *Mean is 0.10/yr*
- 90% credible interval is (0.02, 0.24)
- Little sensitivity to choice of first-stage prior for this example
  - Expected as variability is not too large

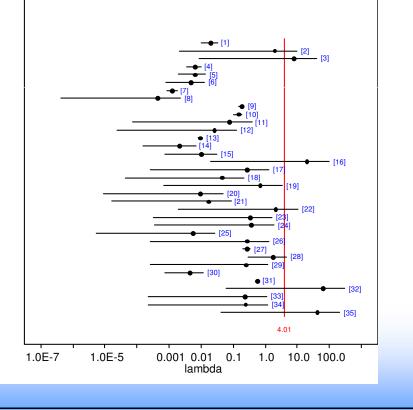


# Second Example: Digital I&C Failure Data

- 35 data sources, assumed to be Poisson-distributed
- Side-by-side interval plot illustrates extreme variability in Poisson rate

Data taken from Yue, Meng and Chu, Tsong-Lun. Estimation of Failure Rates of Digital Components Using a Hierarchical Bayesian Method. New Orleans : 2006. International Conference on Probabilistic Safety Assessment and Management.

Idaho National Laboratory



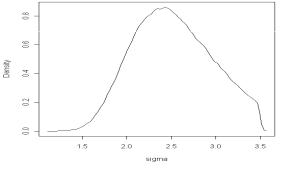
### **Results with Gamma First-Stage Prior**

- *Mean is 0.09/yr* 
  - EB mean is 0.07/yr
  - Median is 0.01/yr
- 90% credible interval is (6.7E-8, 0.4)
- Posterior mean of *α* is 0.24
  - EB estimates  $\alpha = 0.24$
- Conjugate first-stage prior can only capture large variability by having small value of α
  - Gives vertical asymptote at 0
    - Unrealistically small lower percentiles



# **Lognormal First-Stage Prior**

- Lognormal density goes to 0 at 0
  - No vertical asymptote
- Must avoid overly restrictive hyperpriors, especially on  $\sigma$ 
  - Data-based unif(1, 3.5) hyperprior causes truncation of upper tail of posterior density for  $\sigma$
  - Leads to low estimate of mean



- Mean depends strongly on  $\sigma$
- Used flat hyperprior on  $\mu$  and uniform(0, 5) hyperprior on  $\sigma$ 
  - $\sigma = 1.4$  corresponds to error factor of 10



### **Results with Lognormal First-Stage Prior**

- Mean is 1.1 /yr
  - Median is 0.007/yr
- 90% credible interval is (6.3E-5, 0.55)
- Recall results with gamma first-stage prior:
  - Mean = 0.09/yr, median = 0.01/yr
  - 90% interval (6.65E-8, 0.43)
- Mean is not robust, median and 95% value relatively robust



# Conclusions

- Convergence can be an issue for hierarchical Bayes
  - May need to reparameterize to accelerate convergence
- When variability is large, results can be sensitive to choice of first-stage prior
  - Conjugate prior requires small shape parameter to represent large variability
    - Leads to unrealistically small lower percentiles
  - Nonconjugate first-stage prior gives more realistic lower percentiles, but mean may not be representative



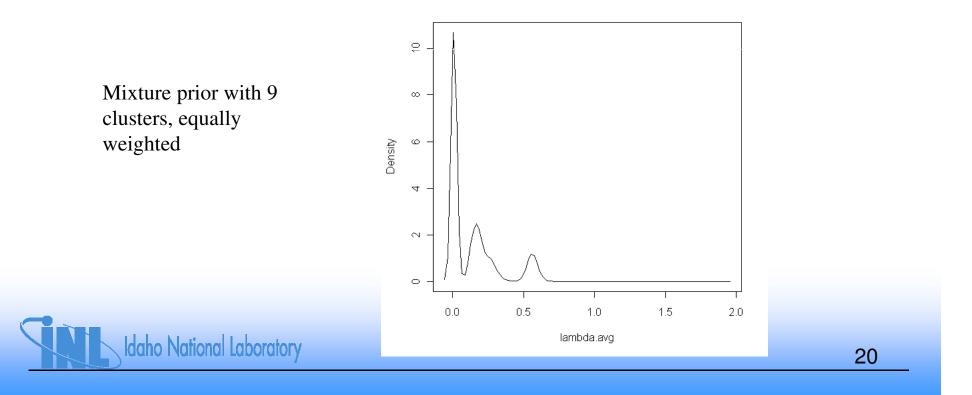
# Conclusions

- In cases of large variability, median is more robust estimate than mean
- Recommended first-stage priors when variability is large;
  - Poisson data: lognormal prior for  $\lambda$
  - Binomial data: logistic-normal prior for p
    - Lognormal prior for p can give values > 1
    - Logistic-normal and lognormal approximately same for small p



# Conclusions

• With extreme source-to-source variability, may want to consider clustering sources and developing mixture prior or eliminating some sources altogether



# **Backup Slides**



### **Hierarchical Bayes Model for LOSP Data**

• WinBUGS script

```
model {
for (i in 1 : N) {
lambda[i] ~ dgamma(alpha, beta) #Model variability in frequency - gamma first stage
}
lambda.avg ~ dgamma(alpha, beta) #Industry population variability curve - gamma
alpha ~ dgamma(0.0001, 0.0001) #Vague hyperprior for alpha
beta ~ dgamma(0.0001, 0.0001) #Vague hyperprior for beta
}
inits
list(alpha=1, beta=1000)
```

```
list(alpha=10, beta=1000)
```



### WinBUGS Script for Reparameterized Model

```
model {
for (i in 1 : N) {
lambda[i] ~ dgamma(alpha, beta) #Model variability in frequency - gamma first stage
}
lambda.avg ~ dgamma(alpha, beta) #Industry population variability curve – gamma
alpha <- pow(CV, -2)
beta <- alpha/mean
mean ~ dgamma(0.0001, 0.0001)
CV ~ dgamma(0.0001, 0.0001)
}
Inits</pre>
```

```
list(CV=0.5, mean=1)
list(CV=2, mean=0.1)
```



### **Results with Lognormal First-Stage Prior**

WinBUGS script

```
model {
for (i in 1 : N) {
lambda[i] ~ dlnorm(mu, tau) #Lognormal first-stage prior
}
lambda.avg ~ dlnorm(mu, tau)#Industry population variability curve – lognormal
mu ~ dflat()
tau <- pow(sigma, -2)
sigma ~ dunif(0, 5)
}
inits
list(mu=-3, sigma=2)</pre>
```



list(mu=-1, sigma=1)