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Scope of Research

» Performed Under the Collaborative Research Agreement between
US NRC and CRR at UMD

» Integrated Methodology for TH Uncertainty Analysis

v Implementation of the Best Features from Existing Methodologies
» Use all available information

v About Boundary/Initial Conditions

v Models, Sub-models, and Corresponding Parameters

v Output
» Treat Code Structure Uncertainty (Model Uncertainty)

» Representation/Interpretation of Results
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Methodology Overview
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Singe Model Uncertainty Treatment

» Use Bayesian Model Uncertainty Approach to account for

v" Correction Factor
Marviken Critical Flow Test

v" Bias Consideration Calculaiod vs. Meoasurod Mass Fluos
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v E.g., TRAC natural choking model has an average bias of 1.2
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Sub-Model Uncertainties (Alternative Models)

» Dynamic Model Switching
» Use “Recommended” Model
» User Selection Among Provided Models

» Model Mixing

PSAM9 May 20, 2008




Dynamic Model Switching
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Flow Rate (kg/s)

Model Mixing
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Residual Model Uncertainties : Output Updating

» Data and information about ‘\Y
output (usually integral test ‘K

data) not used for input t

uncertainty characterization

» Bayesian updating for output
is devised to perform

updating
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Output Updating

» Independent Data Required
v" Data from Integrated Test Facility

» Need likelihood function of the available data

» Approaches
v" Paired Data (7", 1,,....T,") 7", T,")
« Equal Number of Experimental and Calculation Data
» Association of Test Data with Code Predictions
v" Non-Paired Data
* Unequal number of test and code data
» Assumption of independence between test and code data
» Data can not be precisely paired in case of TH computational codes
v" Many Unknown BIC in Pairing Experiment and Calculation
v Unequal Sizes of Experiment and Calculation Data

v Due to Temporal Uncertainty in Magnitude and Timing, it is not Easy to
Pair Data Points

PSAM9 May 20, 2008




Paired vs. Non-Paired Data

» Paired Data

v" Possibility to construct error
distribution explicitly
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» Independent data

» BVN Distribution for data and
code calculation
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Output Updating-Methodology Steps

Joint Distribution of
Test and Code Data
(e.g., BVN)
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Mathematical Basis

Data Availabilitx and AEEIicabiIitx

» Availability of Data

v Model Estimate from Code Calculation
v" Experimental data set D such that D={D,, D,, ..., D3}
v Confidence Factor ¢

» Applicability of Data (Attributes of Scenario Facility and

Experimental Facilities)
v" Distortion from Scaling (e.g., 1T group values)
v Location and Size of Break,
v Rate of power,

v" Scaling Ratio of the Facilities,

>
v Involved Safety systems, NPP Test

v Nuclear Core Configuration _ — ] Facility
v Others! Attributes |, <+« |Attributes

Comparing Attributes
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Bayesian Model Uncertainty Framework

[L(IM,D|T)).7(T)
jT [L(IM,D|T)]° .x(T)dT

(T | IM, D) =

0<p=1
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Data Applicability

O0<p=<1
Applicability Weight
Value (o) Statement
0.00 Absolutely not Applicable
0.20 Strongly not Applicable
0.40 Moderately not Applicable
0.50 Slightly Applicable
0.60 Moderately Applicable
0.80 Strongly Applicable
1.00 Absolutely Applicable

(7| M. D) = —LLUM DDV (T)

jT [L(IM,D|T)).x(T)dT
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Uncertainty Analysis
LOFT LBLOCA

LOFT LOB-1 Uncertainty Analysis

PCT Scatter
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Code/ Test Data for Output Updating

REsults fromFirst 93 Code Uncertainty propagation

Code Predictions

aaaaaaaa

Tést Results
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From Input Phase to Out-Put Phase

—_—

PCT Scatter-Code Data 97.5%
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A distribution shape is assumed for the Data
v Best fit to the data

* e.g., normal or lognormal distribution
v Assumed Perior for Distributions Parameters; Wide Ranges
Update Distribution of Parameters Utilizing Bayesian Theory
2(11.0) = L(T,,T,,....Ty) 7, (1, 0)
[[LT. T, )7y (11,0)

Coverage Area of the Distribution from Tolerance Interval is Assigned to
Distribution Quantiles

v" The smallest value to : 2.5% , Largest value to 97.5%
Distribution Parameters Estimated From Quantiles
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Code Calculation Befare and After
Llpdating

LOFT PCT After Update
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Concluding Remarks

Y

TH code structure uncertainty analysis
Utilization of all available types of data and information

Different strategy for treating several classes of model (code
structure) uncertainty

» A Bayesian solution has been introduced for single model structure
uncertainty assessment, while other techniques such as mixing,
switching, maximization /minimization, are proposed for alternative
models.

» Accounting for User Errors, Numerical Approximations,
Unknown and Not Considered Sources of Uncertainties
(Screened input and/or Incompleteness)

» Ultilization of Partially Relevant Data About Code Output
> Methodology for Paired vs. Non-Paired Data

YV VY
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