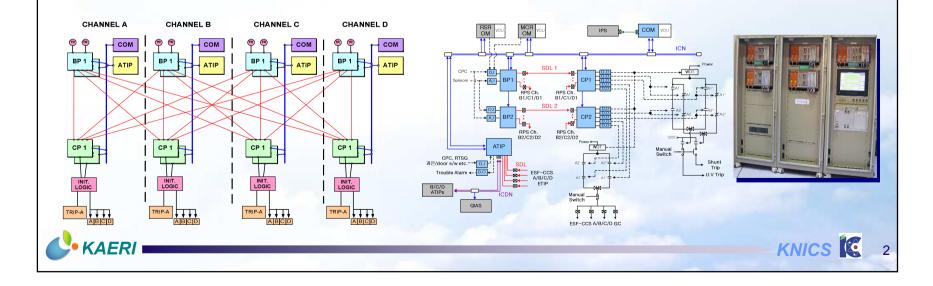
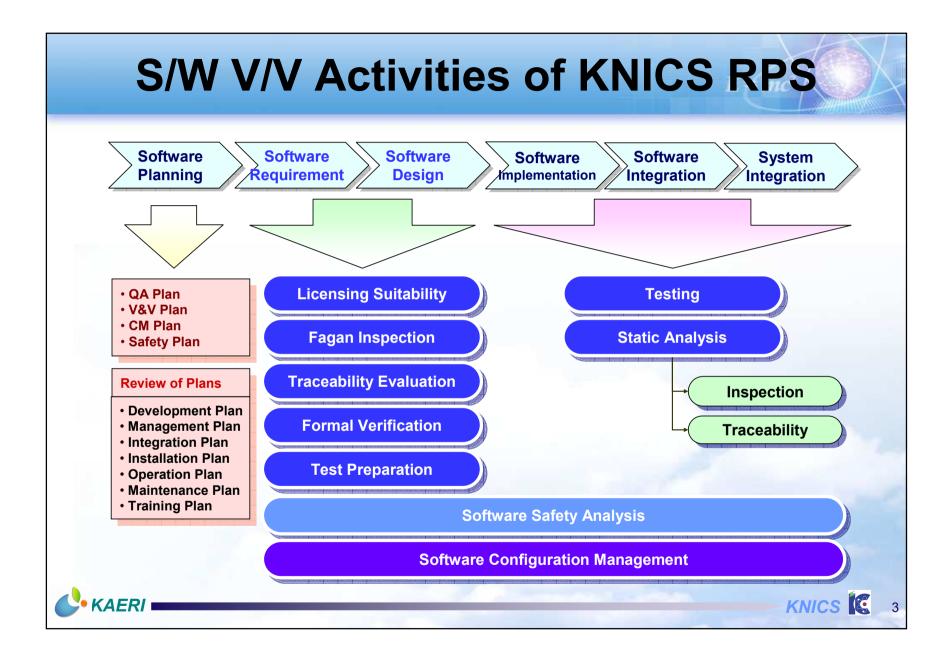
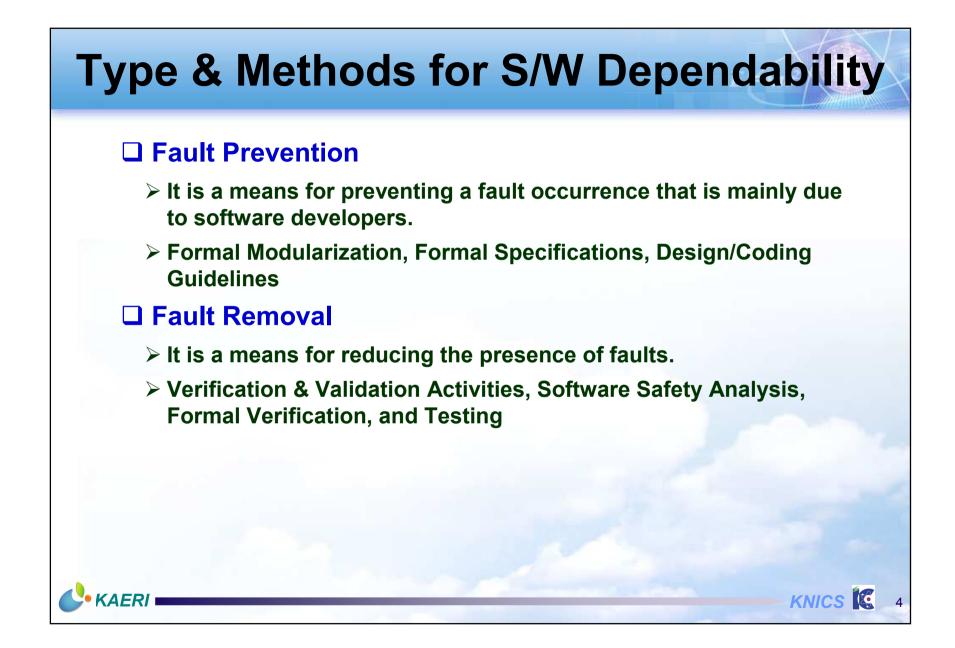
Safety Activities for Improving Safety-Critical Software Reliability

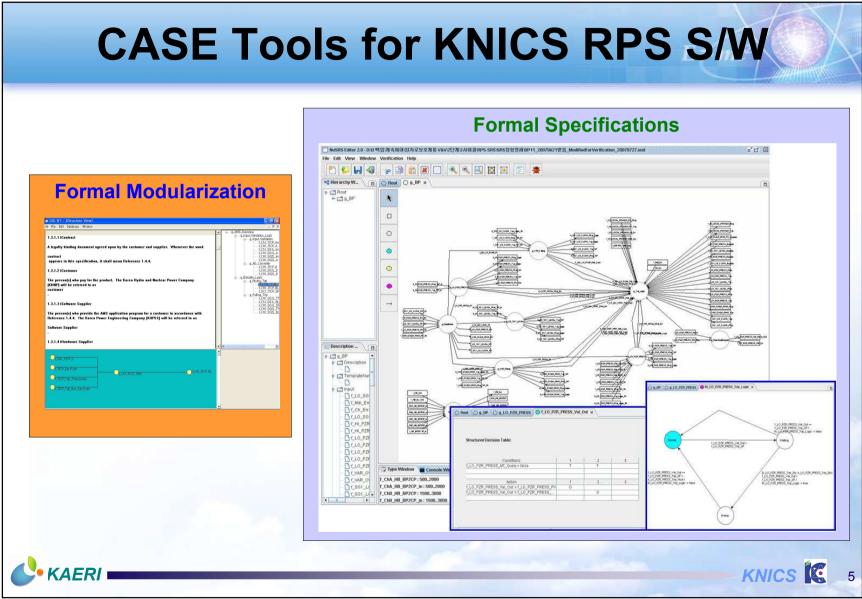
May 21th, 2008

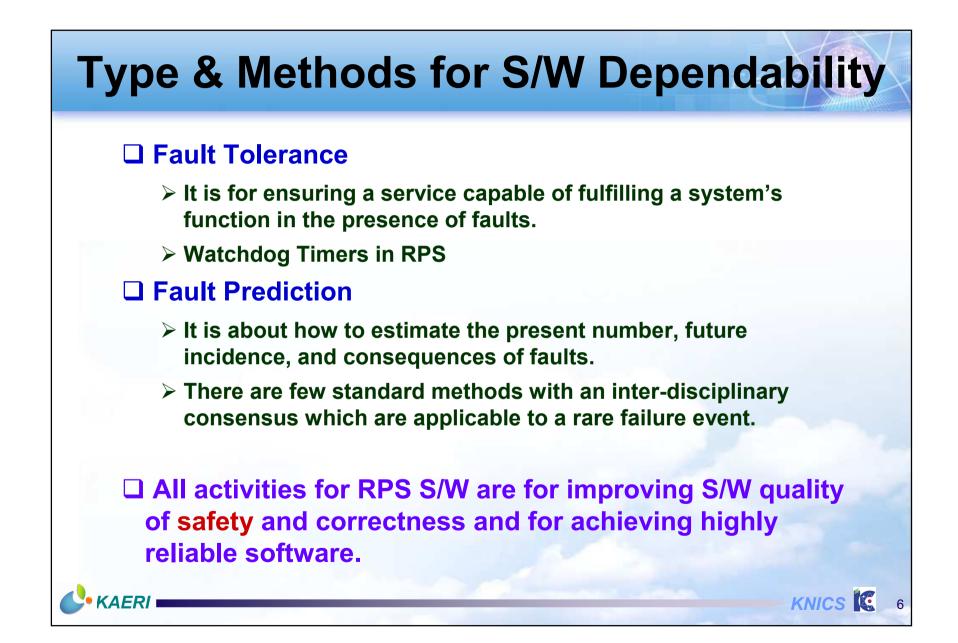
Gee-Yong Park* and Kee-Choon Kwon

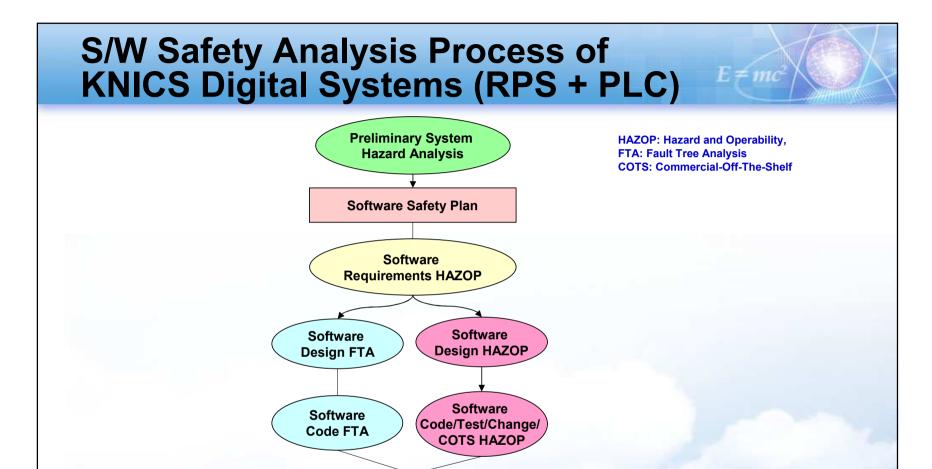

I&C and Human Factors Division Korea Atomic Energy Research Institute






Configuration of Single Channel in KNICS RPS


- Two Bistable Processors (BPs): Determine trip state by signal comparison, SC
- Two Coincidence Processors (CPs): Generate trip signal by a 2/4(2/3) voting, SC
- Automatic Test & Interface Processor (ATIP): Performs Tests(MT/MIAT/PT) & Interfaces with other ATIPs, SR
- Cabinet Operator Module (COM): GUI + H/W (Ch. Bypass, Init. Circuit Reset)
 Network Type: SDL (SC), ICN (SR), ICDN



Software Causes of Hazards

Recommendations, Reliability/Safety Analysis Reports

KAERI

S/W Safety Analysis at Design Phase

□ Safety Activity

>Hazard Analysis for Functional Characteristics

□ S/W Safety Analysis for DD by Function Block Diagram

- Scope: All Safety-Critical Software Modules/Functions
- Method: Software HAZOP + Software FTA
- > Strategy:

KAFR

- ✓ Preparation of Software-Contributable System Hazards
- ✓ HAZOP is applied to all the S/W modules to identify a S/W hazard that can induce a system hazard, considering the system safety and availability
- ✓ Software FTA is applied to only S/W modules that the S/W HAZOP indicated some critical hazards residing in those modules. And its top node is only related with the most safety-critical hazard.
- ✓ Software FTA is composed of fault tree templates for function blocks used in FBD (function block diagram).

KNICS

8

Characteristics of Analysis Techniques

Software HAZOP	Software FTA
 All Design Specifications (Documents + DD by FBD) All SW Contributable Hazards Forward, Broad-Thinking Analysis 	Defective SW Module Most Critical Hazard Backward, Local Systematic Analysis
 Brainstorming by HAZOP Members 	•Fault Tree by an Individual Analyst
 Deviation Quantity: Qualitative Functional Characteristics Guide Phrases (Rather Than Guide Words) 	 Based on Fault Tree Templates for Function Blocks Logical Operation in Fault Event
Need Discussion Skills	Difficult to Apply to All Scope

Software-Contributable System Hazards

□ Software-Contributable System Hazards for KNICS RPS

No	Hazard	Criticality Level	
1	RPS cannot generate a trip signal when a trip condition for a process variable is satisfied.		
2	RPS generates a trip signal when it should not generate a trip signal.	3	
3	RPS cannot send qualified information of its operating status to the main control room.	2	
	ty Level 4 - The most significant hazard that can drive a p ty Level 3 - A hazard that impacts significantly on the syst		
	does not lead to an accident		
Criticali	ty Level 2 - A hazard that can affect more or less the syste	em operation	

10

Software HAZOP

□ HAZOP Definition

A HAZOP study is for the identification of a hazard in a target system by investigating a plausible deviation of a quantity or attribute and then seeking out the cause that is capable of inducing this deviation and consequences resulting from this deviation.

□ Basic Components of HAZOP

Deviation Quantity: (Quantitative) Temp., Press., Valve Openings

Guide Words: More, Less, Equal, etc.

Distinguishing Features of Software HAZOP

- Deviation Quantity: S/W Functional Characteristics (Qualitative)
 - Functional Characteristics: Accuracy, Capacity, Functionality, Reliability, Robustness, Security, Safety
- Guide Phrases: For Application to All S/W Lifecycles

KAERI

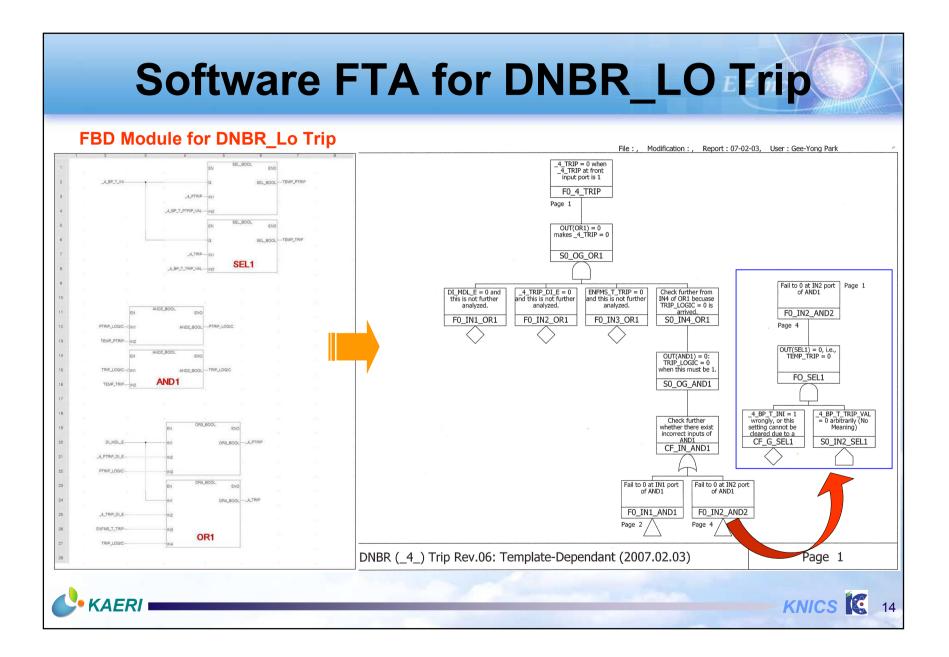
Guide Phrases and Deviation Checklist

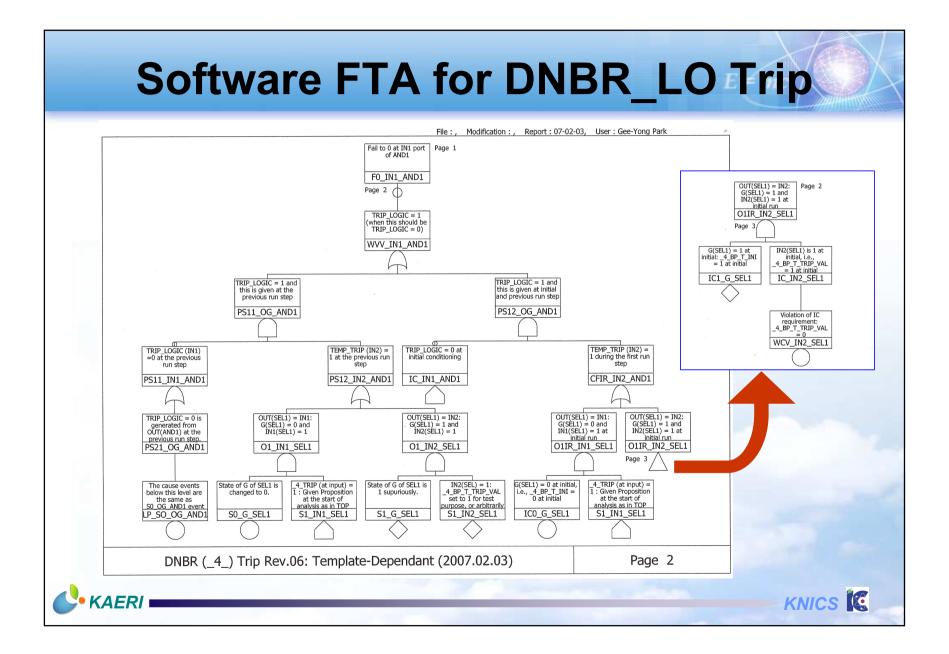
 Among guide phrases devised and collected, appropriate guide phrases and their associated deviation checklist suitable for KNICS RPS S/W design are extracted and arranged for S/W functional characterisitics.

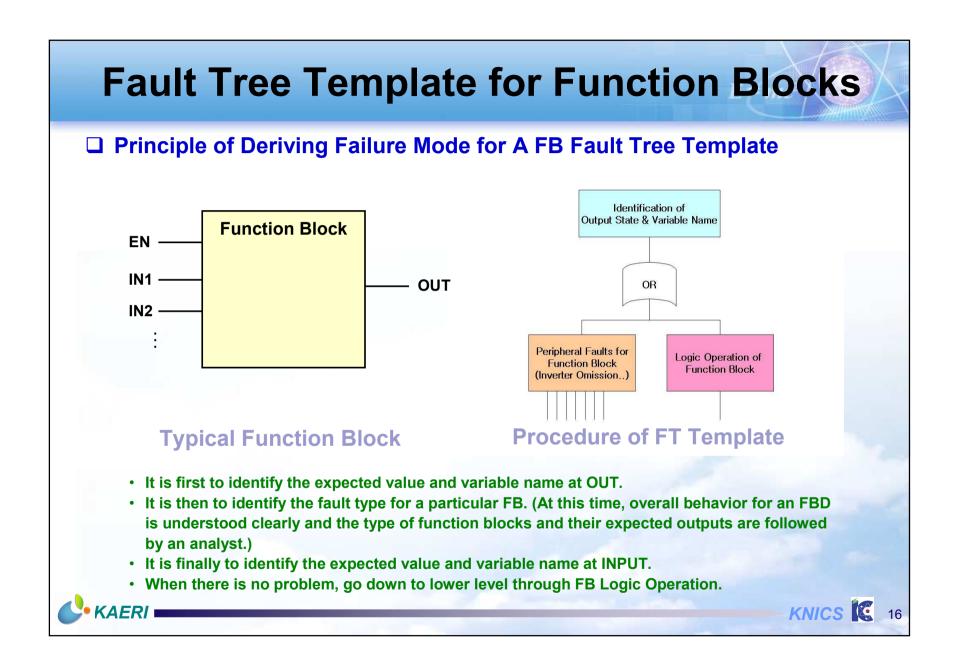
KAFR

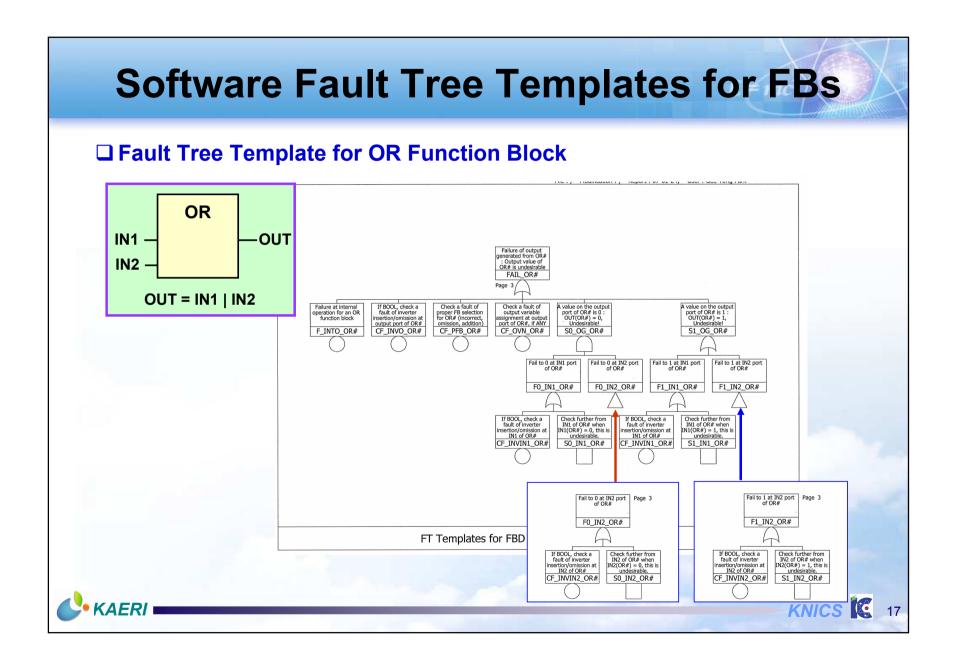
Characteristic	Guide Phrase	Deviation Checklist	
Accuracy	Below minimum range	What is the consequence if the sensor value	
Accuracy	Delow minimum range	is below its minimum range?	
Accuracy	Above maximum range	What is the consequence if the sensor value	
, 1000100)	, actor maxima range	is above its maximum range?	
Accuracy	Within range, but wrong	What is the consequence if the sensor value	
,	3, 3	is within its physical range but incorrect?	
Accuracy	Incorrect physical units	What is the consequence if the input has an	
		incorrect physical unit? What is the consequence if the input has a	
Accuracy	Wrong data type or data size	wrong data type or data size?	
		What is the consequence if the input	
Accuracy	Wrong physical address	variable is allocated to a wrong physical	
Accuracy	wrong physical address	address?	
		What is the consequence if a wrong input	
Accuracy	Correct physical address, but	variable is allocated to a correct physical	
, local acy	wrong variable	address?	
		What is the consequence if wrong type or	
Accuracy	Wrong variable type or name	name for an input /output/internal variable is	
	0 1	used in the FBD module?	
Acouroov	Incorrect variable initialization	What is the consequence if the input/output/	
Accuracy		internal variables are initialized incorrectly?	
Accuracy	Wong constant value	What is the consequence if the internal	
Accuracy		constant is given a wrong value?	
Accuracy	Incorrect update of history	What is the consequence if the variable is	
Accuracy	variables	updated incorrectly?	
Accuracy	Wrong setpoint calculation	What is the consequence if the procedure	
, (660.00)		for calculating a setpoint is incorrect?	
Capacity	Erroneous communication	What is the consequence if there is an error	
	data	in the ICN data?	
Capacity	Erroneous communication	What is the consequence if there is an error	
, ,	data	in the SDL data?	
Capacity	Unexpected input signal	What is the consequence when an unexpected input signal is arrived?	
		What is the consequence if the operator	
Capacity	Untimely operator action	commences a setpoint reset or an operating	
Capacity		bypass function untimely?	
-		What is the consequence if some portions in	
Functionality	Function is not carried out as	the FBD module have a defect or cannot	
1 anotionality	specified	perform the intended behavior?	
Delle hillt	Data is passed to incorrect	What is the consequence if the data is	
Reliability	process	passed to an incorrect process?	
Debuetres	Incorrect selection of test	What is the consequence if the test mode is	
Robustness	mode	selected or changed unexpectedly?	
Robustness	Incorrect input selection	What is the consequence if the input	
	mooned input selection	selection is incorrect?	6 -

A Result of Software HAZOP


□ Software HAZOP for SG1_FLW_Lo Trip FBD Module


Fun. Charac.	Deviation Checklist	Cause	Analysis	Effect	С	Suggestion
Accuracy	What is the consequence if the sensor value is below its minimum range?	Sensor Failure The TRIP_DECISION sub-module handles properly an out-of-range value, but it is carried out after all logical operations are done.		No effect on safety, but operability is poor.	2	It is desirable that a trip signal occurs at the front when an out-
Accuracy	What is the consequence if the sensor value is above its maximum range?	Sensor Failure				of-range sensor input value exists.
Accuracy	What is the consequence if the sensor value is within its physical range but incorrect?	Sensor Failure or, Input Conditioner Malfunction	This is the problem at input conditioning processor.	Severe effect on safety	4	Measures should be provided at input processor.
Accuracy	What is the consequence if the internal constant is given a wrong value?	Wong constant value allocation	If MAXCNT is set to 0, the trip signal is always ON regardless of the trip condition status.	Poor Operability	3	Need careful attention when assigning a
			If MAXCNT is too large, the trip signal is generated at much later time.	Violating the system response time	4	value.
Capacity	What is the consequence when an unexpected input signal is arrived?	ATIP Error	No part performs an exceptional handling when ATIP sets up an erroneous test operation.	Wrong test execution	1	Augment test mode selection.
Functionality	What is the consequence if some portions in the FBD module have a defect or cannot perform its	Error in Logic Operation	Pretrip is cancelled whenever it is triggered at the pretrip sub- module.	Pretrip is never functioning	3	Modify a pretrip logic.
	intended behavior?		The hysterisis is not reflected in the trip logic sub-module because of using 19th previous value.	Inducing a trip malfunction	4	Modify trip logic.


The software module with criticality level 4 (mostly in Functionality) is the target module for the application of software FTA

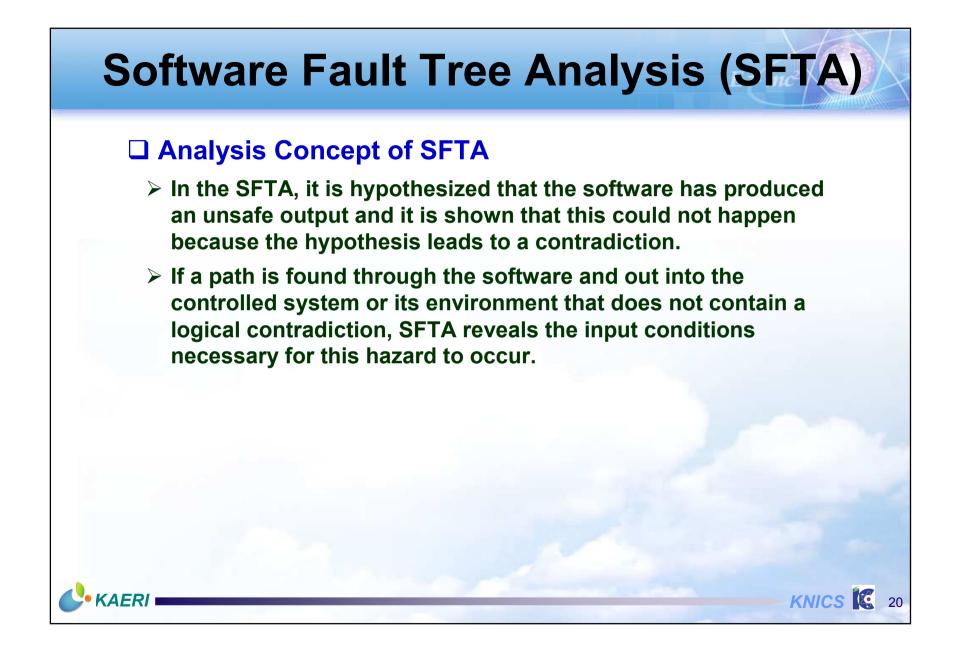

Defective Modules in BP: SG1_FLW_Lo Trip, PZR_PR_Lo Trip,

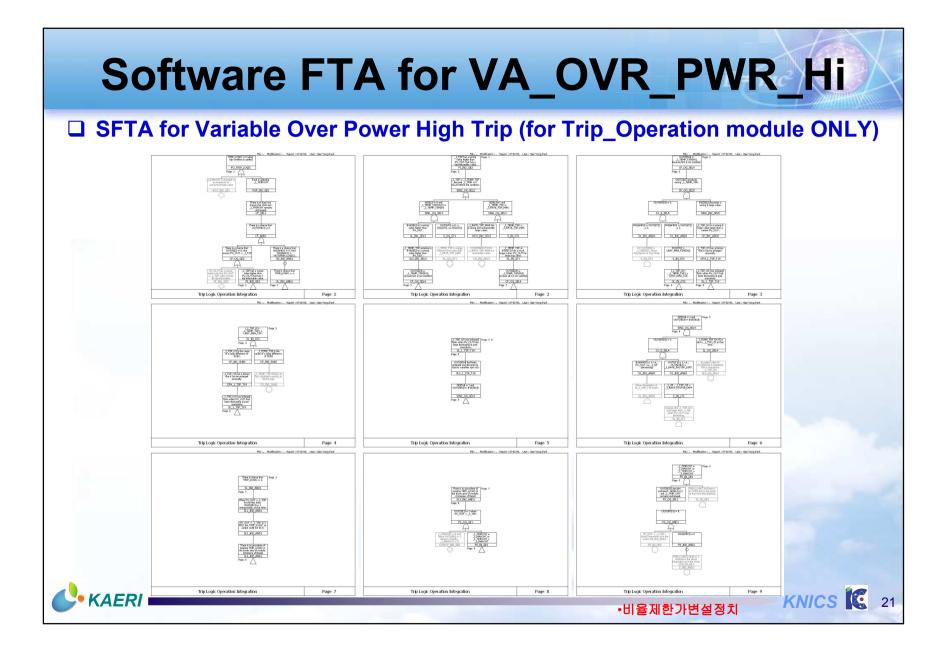
KAERI VA_OVR_PWR_Hi Trip, DNBR_Lo Trip

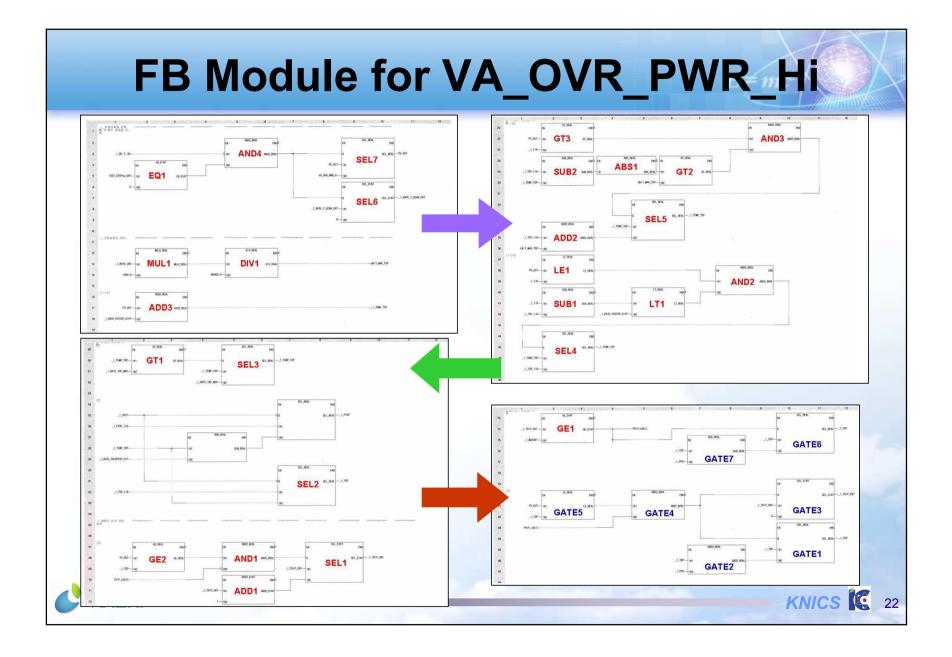
Conclusions

- For KNICS RPS S/W, various rigorous methods such as formal specification, formal verification, and SSA are provided in order to achieve reliable software.
- For the SSA, two complementary methods (Software HAZOP + SFTA) are employed.
- Because of a different viewpoint, software HAZOP + SFTA can obtain some faults that have not been found from formal V&V.
- The rigorous approach for SSA and V&V activities will improve S/W quality.

KAER


Identification of Interface Points


□ FBD Modules for BP Software


NO	Module		Description		
1	Receive_Signal		HW/SDL/ICN Receive Module		
2	PAT_Scheduler		Automatic Test Scheduler		
3	Test_Selection		Test Selection Module		
	PZR_PR_Hi Trip	Pressurizer Hi Pressure Trip			
		SG1_LVL_Lo_RPS Trip	SG-1 Low Level Trip		
		SG1_LVL_Lo_ESF Trip	SG-1 Low Level Trip for ESF		
		SG1_LVL_Hi Trip	SG-1 Hi Level Trip		
		SG1_PR_Lo Trip	SG-1 Low Pressure Trip		
		CMT_PR_Hi Trip	Containment Hi Pressure Trip		
		CMT_PR_HH Trip	Containment Hi-Hi Pressure Trip		
		SG1_FLW_Lo Trip	SG-1 Low Coolant Flow Trip		
	Trin	PZR_PR_Lo Trip	Pressurizer Low Pressure Trip		
4	Trip_ Logic	VA_OVR_PWR_Hi Trip	Variable Over Power Hi Trip		
	LUGIC	SG2_LVL_Lo_RPS Trip	SG-2 Low Level Trip		
		SG2_LVL_Lo_ESF Trip	SG-2 Low Level Trip for ESF		
		SG2_LVL_Hi Trip	SG-2 Hi Level Trip		
		SG2_PR_Lo Trip	SG-2 Low Pressure Trip		
		SG2_FLW_Lo Trip	SG-2 Low Coolant Flow Trip		
		LOG_PWR_Hi Trip	Log Reactor Power Hi Trip		
		DNBR_Lo Trip	Low DNBR Trip		
		LPD_Hi Trip	Hi LPD Trip		
		CPC_CWP Trip	CPC CWP		
5	Test_Results_Handler		Test Results Handling Module		
6	HB_MONITORING		Heartbeat Monitoring Module		
7	HB_Gen		Heartbeat Generation Module		
8	Ch_Byp	ass_Send_Receive	Channel Bypass Transfer Module		
9	Send_S	ignal	HW/SDL/ICN Sending Module		

KAERI

- Interface Points between FBD Modules and Hazards
 - Trip modules in no.4 (except CPC_CWP) affect the hazard item 1 and 2.
 - Some S/W in FBD Module no.1 & 2 affect the hazard item 1 and 2 through Trip_Logic (no.4).
 - FBD modules of no.5,8, & 9 affect hazard item 3.

