









## Analyses related to the GO-FLOW Methodology

Analysis for dynamical system PSAM3,1996 Safety analysis of fuel cell system for ships PSAM4,1998 Safety analysis of spent fuel carrier SRA of J,1998 Analysis of automatic train control system PSAM4,1998 Operability and hazard analysis of Olefin plant PSAM4,1998 Development of Safety analysis system PSA99,1999 Analysis of Human-machine system PSAM5,2000 A Method to Solve Logical Loops PSAM5,2000 To treat a continuously maintained activity PSAM6,2002 More sophisticated improvements to treat a continuously maintained activity PSAM7,2004 A Self-holding Type Relay System PSAM8.2006 PSAM8: T.MATSUOKA, Utsunomiya University

# **GO-FLOW** Bayesian Network

It is used as a probabilistic method of reasoning under uncertainty knowledge.

Recently, BN has been becoming a popular tool in reliability engineering.

BN is represented by a graphical diagram consists of nodes and directed links.

The BN diagram is similar to the GO-FLOW chart that has operators and signal lines.

PSAM8: T.MATSUOKA, Utsunomiya University





| <b>GO-FLOW</b> Examples of CPT |                                                          |          |      |    |        |          |         |            |         |          |                       |
|--------------------------------|----------------------------------------------------------|----------|------|----|--------|----------|---------|------------|---------|----------|-----------------------|
|                                | Grandfatheraa $0.3333$ aA $0.3333$ Gene: A, aAA $0.3333$ |          |      |    |        |          | a       |            |         |          |                       |
|                                | Son,                                                     | Da       | ught | er | (law d | of inher | itance) | )          |         |          |                       |
|                                | Mother                                                   | aa       |      |    | aA     |          |         | AA         |         |          |                       |
|                                | Father                                                   | aa       | аA   | AA | æ      | аA       | AA      | <b>a</b> a | aA      | AA       |                       |
|                                | aa                                                       | 1        | 0.5  | 0  | 0.5    | 0.25     | 0       | 0          | 0       | 0        |                       |
|                                | aA                                                       | <u> </u> | 0.5  | 1  | 0.5    | 0.5      | 0.5     | 1          | 0.5     | 0        |                       |
|                                | AA                                                       | 0        | U    | 0  | Û      | 0.25     | 0.5     | 0          | 0.5]    | 1        | And the second second |
|                                |                                                          |          |      | P  | SAM8:7 | C.MATS   | UOKA.   | Utsunon    | niva Un | iversitv |                       |
|                                |                                                          |          |      |    |        |          | ,       |            | · · · · |          |                       |



GO-FLOW手法



#### Table 1: Time steps

| Time step | Meaning             | Comments                                |       |
|-----------|---------------------|-----------------------------------------|-------|
| 1         | Initial time        | Sub-system starts to operate            |       |
| 2         | 10 hours            |                                         |       |
| 3         | 30 hours            |                                         | •     |
| 4         | 100 hours           |                                         |       |
| 5         | Repair action       | Failure is recovered and becomes as new |       |
| 6         | Additional 30 hours |                                         |       |
|           |                     |                                         |       |
|           | i                   | PSAM8:T.MATSUOKA, Utsunomiya Univer     | rsity |
|           |                     |                                         |       |

#### Table 2: Failure data

| Component | Failure data    | Failure probability at | Comments                           |  |  |
|-----------|-----------------|------------------------|------------------------------------|--|--|
| (Event)   |                 | time step 4            |                                    |  |  |
| X1        | λ=1.054x10-3/h  | 0.1                    |                                    |  |  |
| X2        | λ=3.567x10-3/h  | 0.3                    |                                    |  |  |
| X3        | λ=1.054x10-3/h  | 0.1                    |                                    |  |  |
| X4        | λ=3.567x10-3/h  | 0.3                    |                                    |  |  |
| X5        | 0.1             | 0.1                    | Successful start is 0.9            |  |  |
| X6        | λ=3.567x10-3/h, | 0.3                    | Failure is repaired at time step 5 |  |  |
| X7        | λ=1.0x10-5/h    | 0.001                  |                                    |  |  |
| CCF       | λ=1.0x10-4/h    | 0.01                   |                                    |  |  |
|           |                 |                        | Star B                             |  |  |
|           |                 | PSAM8:T.MATSU          | OKA, Utsunomiya University         |  |  |







| <i>GO-FLOW</i><br>Examples of CPT |                                          |         |         |    |       |      |         |  |  |
|-----------------------------------|------------------------------------------|---------|---------|----|-------|------|---------|--|--|
| X2                                |                                          |         |         |    |       |      |         |  |  |
| X4andX                            | 3                                        | X2andX5 | X2      | X4 | X5    | X3   | XCM     |  |  |
| True<br>Failure                   | 0.7<br>0.3                               |         |         |    |       |      |         |  |  |
| X4 or                             | X2                                       | T       |         |    |       | - :1 |         |  |  |
| X2                                | Тица                                     | Irue    | Failura |    | Го Го |      | Failura |  |  |
| True                              | 1                                        | 1       |         | 1  | THUC  | 0    |         |  |  |
| Failure                           | 0                                        | 0       |         | 0  |       | 1    |         |  |  |
|                                   |                                          | '       |         |    |       |      |         |  |  |
|                                   |                                          |         |         |    |       |      |         |  |  |
|                                   | PSAM8: T.MATSUOKA, Utsunomiya University |         |         |    |       |      |         |  |  |
|                                   |                                          |         |         |    |       |      |         |  |  |

Exactly the same value is obtained for the system failure. The measures of importance are also easily calculated in BN. The posterior probability of any given variables. A new evidence: X6=0.15 =>System failure: 0.2817 A new evidence: a top event(system failure itself). => the possible explanations of an exhibited system failure. This is a kind of diagnostic analysis. PSAM8: T.MATSUOKA, Utsunomiya University

















GO-FLOW手法