Vulnerability analysis of a power transmission system

Enrico Zio
Cristina-Andreea Petrescu
Giovanni Sansavini

Polytechnic of Milan
The System

Network infrastructures for electric power transmission

COMPLEXITY
The problem

Network infrastructures for electric power transmission

- robustness (random failures)
- resilience
- (attacks)
Methodologies

Robustness to failure?
Vulnerability to attacks?

Detailed simulation
PRA Tools (ET/FT)

Average indicators
Modeling
Contribution of this work

Average indicators modeling:

• topological analysis
• reliability-weighted topological analysis
 • validation by Monte Carlo simulation
Topological model

• Network infrastructure = Connected graph, $G = (N, K)$

• Adjacency matrix $\{a_{ij}\}$: $a_{ij} = 1$ if there is an edge joining node i to node j and 0 otherwise

• $d_{ij} = \text{shortest path length from node } i \text{ to node } j$
Topological indicators

- Global efficiency = measure of how good the nodes communicate through the network
 \[E = \frac{1}{N(N-1)} \sum_{i,j \in N, i \neq j} \frac{1}{d_{ij}} \]

- Local efficiency = measure of the connectivity of the subgraph of the neighbors of a generic node \(i \)
 \[E_{loc} = \frac{1}{N} \sum_{i \in G} E(G_i), \text{ where } E(G_i) = \frac{1}{k_i(k_i - 1)} \sum_{l \neq m \in G_i} \frac{1}{d_{lm}} \]
Reliability-weighted topological model

• \(p_{ij} \) = connection reliability = probability that the transmission between nodes \(i \) and \(j \) occurs by the requirements

• Reliability matrix \(\{ p_{ij} \} \)

• Most reliable path “length” from node \(i \) to node \(j \):

\[
d_{ij} = \min_{\gamma_{ij}} \left(\frac{1}{\prod_{mn \in \gamma_{ij}} p_{mn}} \right) \quad 1 \leq d_{ij} \leq \infty
\]
Reliability indicators

• Global reliability efficiency = measures the network connection characteristics on a global scale, accounting for the reliability of the edges in providing the power transmission

\[E_r = \frac{1}{N(N-1)} \sum_{i,j \in N, i \neq j} \frac{1}{d_{ij}} \]

• Local reliability efficiency = measures how much the network is fault tolerant in that it shows how reliable the power transmission remains among the first neighbours of \(i \) when \(i \) is removed

\[E_{rloc} = \frac{1}{N} \sum_{i \in G} E_r(G_i), \text{ where } E_r(G_i) = \frac{1}{k_i(k_i-1)} \sum_{l \neq m \in G_i} \frac{1}{d_{lm}} \]
Case study: IEEE 14 BUS (American Electrical Power System)

Physical system

Network graph G(14,20)
Topological analysis: results

<table>
<thead>
<tr>
<th>IEEE 14 BUS Network</th>
<th>Random Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = 5.000$; $K = 2.857$</td>
<td>$D = \infty$; $K = 2.428$</td>
</tr>
<tr>
<td>$L = 2.374$; $C = 0.367$</td>
<td>$L = \infty$; $C = 0.167$</td>
</tr>
<tr>
<td>$E = 0.522$; $E_{loc} = 0.392$</td>
<td>$E = 0.403$; $E_{loc} = 0.167$</td>
</tr>
</tbody>
</table>

IEEE 14 BUS: values of global and local efficiencies larger than the random network.

IEEE 14 BUS ~ small-world network (good robustness properties)
Reliability analysis vs. Monte Carlo validation

IEEE 14 BUS Network

\[E_r = 0.3104 \]
\[E_{rloc} = 0.1864 \]
\[T_{CPU} = 1 \text{ s} \]

Monte Carlo simulation \((N_{MC}=100000)\)

\[E_{MC} = 0.2801 \pm 0.0010 \]
\[E_{M_{loc}} = 0.1434 \pm 0.0014 \]
\[T_{CPU} = 33 \text{ s} \]
Topological and reliability robustness analysis

Random removal of a progressive number of arcs

Relative variation of global topological efficiency and global reliability efficiency

Relative variation of local topological efficiency and local reliability efficiency
Topological and reliability resilience analysis

Removal of one node at a time (and of all the arcs incident onto it):

• Network nodes ranking according to the relative variation of topological and reliability global efficiency caused by their removal:

<table>
<thead>
<tr>
<th>Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE/E</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>ΔEr/E</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

• Network nodes ranking according to the relative variation of topological and reliability local efficiency caused by their removal:

<table>
<thead>
<tr>
<th>Rank</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔEloc/E</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>12,13</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>10,11</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔErloc/E</td>
<td>4</td>
<td>2</td>
<td>12,13</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Power transmission robustness and resilience analysis

Computational burden

Topological and reliability-topological graph analysis

Monte Carlo validation