

Vulnerability analysis of a power transmission system

Enrico Zio Cristina-Andreea Petrescu Giovanni Sansavini

Polytechnic of Milan

The System

Network infrastructures for electric power transmission

COMPLEXITY

The problem

Network infrastructures for electric power transmission

Methodologies

Robustness to failure? Vulnerability to attacks?

Contribution of this work

Average indicators modeling:

- topological analysis
- reliability-weighted topological analysis

o validation by Monte Carlo simulation

Topological model

- Network infrastructure = Connected graph,
 G=(N,K)
- Adjacency matrix {a_{ij}}: a_{ij}=1 if there is an edge joining node *i* to node *j* and 0 otherwise
- d_{ij} = shortest path length from node *i* to node *j*

Topological indicators

 Global efficiency = measure of how good the nodes communicate through the network

$$E = \frac{1}{N(N-1)} \sum_{i,j \in N, i \neq j} \frac{1}{d_{ij}}$$

• Local efficiency = measure of the connectivity of the subgraph of the neighbors of a generic node i $E_{loc} = \frac{1}{N} \sum_{i \in G} E(G_i), where E(G_i) = \frac{1}{k_i (k_i - 1)} \sum_{l \neq m \in G} \frac{1}{d_l}$

Reliability-weighted topological model

- *p_{ij}* = connection reliability = probability that the transmission between nodes *i* and *j* occurs by the requirements
- Reliability matrix {p_{ii}}
- Most reliable path "length" from node *i* to node *j* :

$$d_{ij} = \min_{\gamma_{ij}} \left(\frac{1}{\prod_{mn \in \gamma_{ij}} p_{mn}} \right) \qquad 1 \le d_{ij} \le \infty$$

Reliability indicators

 Global reliability efficiency = measures the network connection characteristics on a global scale, accounting for the reliability of the edges in providing the power transmission

$$E_{r} = \frac{1}{N(N-1)} \sum_{i,j \in N, i \neq j} \frac{1}{d_{ij}}$$

 Local reliability efficiency = measures how much the network is fault tolerant in that it shows how reliable the power transmission remains among the first neighbours of *i* when *i* is removed

$$E_{rloc} = \frac{1}{N} \sum_{i=1 \in G} E_r(G_i), \text{ where } E_r(G_i) = \frac{1}{k_i(k_i - 1)} \sum_{l \neq m \in G_i} \frac{1}{d_{lm}}$$

Case study: IEEE 14 BUS (American Electrical Power System)

Topological analysis: results

<u>IEEE 14 Bl</u>	JS Network	Random Network						
D = 5.000;	$\overline{K} = 2.857$		$D = \infty;$	$\overline{K} = 2.428$				
L = 2.374;	C = 0.367		$L = \infty;$	C = 0.167				
E = 0.522;	$E_{loc} = 0.392$		E = 0.403;	$E_{loc} = 0.167$				

IEEE 14 BUS: values of global and local efficiencies larger than the random network

EEE 14 BUS ~ small-world network (good robustness properties

Reliability analysis vs. Monte Carlo validation

IEEE 14 BUS Network

 $E_r = 0.3104$

 $E_{rloc} = 0.1864$ $T_{CPU} = 1 \text{ s}$

 $\frac{\text{Monte Carlo simulation}}{(\text{NMC}=100000)} \\ E_{MC} = 0.2801 \pm 0.0010 \\ E_{MCloc} = 0.1434 \pm 0.0014 \\ T_{CPU} = 33 \text{ s}$

Topological and reliability robustness analysis

Random removal of a progressive number of arcs

Topological and reliability resilience analysis

Removal of one node at a time (and of all the arcs incident onto it):

•Network podes ranking according to the relative variation of topological and

r	Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	∆ E/E	4	7	9	6	5	2	13	14	10	11	3	1	12	8
	∆E , ∕E ,	7	9	4	6	5	13	14	10	11	8	12	2	3	1

•Network nodes ranking according to the relative variation of topological and reliability <u>local</u> efficiency caused by their removal

Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\Delta E_{loc} / E_{loc}$	2	4	5	12,13		6	1	3	9	7	10,11		8	14
∆E _{rloc} /E _{rloc}	4	2	12,13		6	9	5	7	1	3	11	10	14	8

