Probabilistic Assessment of the Consequences of Vessel Fragmentation

Gianfilippo Gubinelli¹, Giacomo Antonioni², Valerio Cozzani²

¹Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali Università di Pisa, Pisa, Italy
² Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

Introduction

- Fragment projection is a relevant cause of damage in the chemical and process industries
- Most of the recorded accidents are related to the fragmentation of vessel shells due to internal overpressure and/or increase of shell wall temperature
- ✓ Low number of fragments, high fragment weight, low velocity (subsonic) of fragments characterize fragment projection accidents in the process industry
- ✓ No well assessed model exists for the probabilistic assessment of fragment impact and damage

INTRODUCTION: Domino Effect caused by Fragments

Aims

- Development of a model for the quantitative assessment of fragment escalation probability
- ✓ Identification of reference vessel fragmentation patterns
- ✓ Identification of fragment reference shapes

Probability of Escalation due to Fragments

Propagation Vector: FRAGMENTS assumptions:

the probability that two fragments impact on the same target is sufficiently low a "limited" number of fragments is generated in the primary event

$$f_{\text{dom}} = \sum_{F} f_{\text{dom},F}$$

The frequency of escalation due to the fragmentation of a primary equipment can be evaluated as the sum of the escalation frequencies due to each fragment generated

$$P_{1} _{2} = \sum_{F} P_{1} _{2,F}$$

The probability of escalation can be evaluated if it is possible to estimate the probability of escalation due to each fragment

$$f_{d \text{ om},F} = f_{I} P_{1 2,F}$$

The approach can be based on the calculation of the escalation probability of escalation due to each fragment

Escalation probability of a single fragment

Escalation probability of a single fragment

Three conditioned probability values are necessary to evaluate the propagation probability due to a single fragment:

- P_{gen,F}: the probability of the fragment F (with defined mass, shape and initial velocity) to be generated in the primary event. *Influence of primary scenario and primary vessel.*
- P_{imp,F}: the probability of impact between the fragment and a target. *A ballistic and geometrical problem*.
- P_{dam,F}: the probability of target damage given the impact with the fragment. *Influence of secondary vessel, fragment shape and velocity.*

Probability Composition

$$P_{1} \quad _{2,F} = P_{gen,F} P_{imp,F} P_{dam,F}$$

Fragmentation Pattern Probability ($P_{\sigma \rho n}$)

Database on Fragmentation Accidents

Source	N.
Journals	37
MARS DB	2
NTSB	8
Westin	35
Holden	33
Private Data	5
SHELL	1

121 Past Accidents Analyzed Data on 143 Vessel Fragmentation events

Primary Accident: Site, Date, Cause, Vessel type Vessel sizes, Primary event causing fragmentation, etc..

Detailed information

on...

Detailed information on fracture mode, fragment shape, etc.

Detailed information on impact and damage

Likely fragmentation patterns

Available data on past accidents and fracture theory allowed the identification of a limited number of fragmentation patterns

Estimation of fragment drag coefficient

The trajectory and the velocity of the mass centre of the fragment is used to describe the trajectory and velocity of the entire fragment

With a reasonable approximation the fragment trajectory could be represented on a plane perpendicular to the ground

$$\frac{d^2 x}{dt^2} + k \frac{d x}{dt}^2 = 0$$

$$\frac{d^2 y}{dt^2} - 1^n k \frac{d y}{dt}^2 + g = 0$$

Evaluation of impact probability (II)

Definition of k using the approach and the data by Baker et al. (these were validated using experimental results)

The available model: evaluation of impact probability

The modification of the pdf allows introducing preferential directions

PROBABILITY OF IMPACT: Examples of Results

Conclusions

- A model allowing the calculation of fragment impact probability was developed
- ✓ A limited number of reference fragmentation patterns was identified by the analysis of past accidents and of fracture theory
- ✓ The reference fragmentation patterns identified allowed the identification of reference fragment shapes and expected fragment number
- **D**rag factors were calculated for the reference fragment shapes considered
- ✓ The overall approach developed allows the quantitative assessment of impact probability for vessel fragmentation scenarios

