

PROBABILISTIC MODELS TO ESTIMATE FIRE-INDUCED CABLE DAMAGE AT NUCLEAR POWER PLANTS

Genebelin Valbuena Mohammad Modarres (UMCP)

BACKGROUND.

- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 "K FACTOR" MODEL.
- **DATA GATHERING AND ANALYSIS.**
- **DAMAGE-ENDURANCE MODEL DEVELOPMENT.**
- **RESULTS ANALYSIS.**
- **CONCLUSIONS AND RECOMMENDATIONS.**

BACKGROUND

- FIRE-INDUCED ELECTRICAL CABLES/CIRCUITS FAILURE MODES
- **CONDUCTOR TO CONDUCTOR SHORTING FAILURE MODE.**
- FIRE TESTING PROGRAMS (EPRI, NRC, ...)

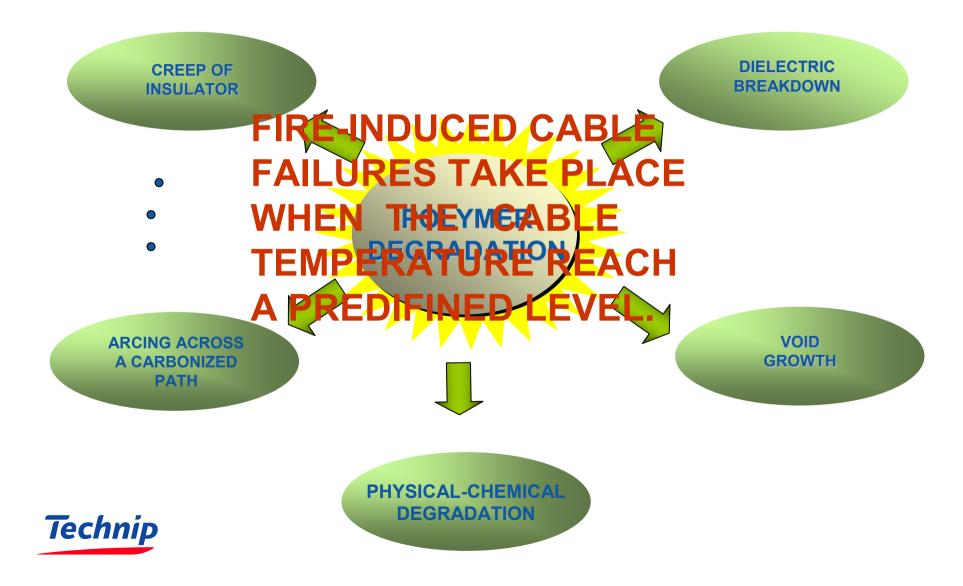
- ✓ BETTER UNDERSTANDING OF FIRE-INDUCED CABLE FAILURE MODES.
- ✓ KNOWLEDGE OF CABLE FAILURE BEHAVIOR UNDER EXTERNAL THERMAL INSULT.
- ✓ IDENTIFICATION OF INFLUENCE FACTORS TO KEY CIRCUIT FAILURES MODES.
- ✓ QUALITATIVE APPROCHES TO ESTIMATE THE PROBABILITY OF CABLE DAMAGE.

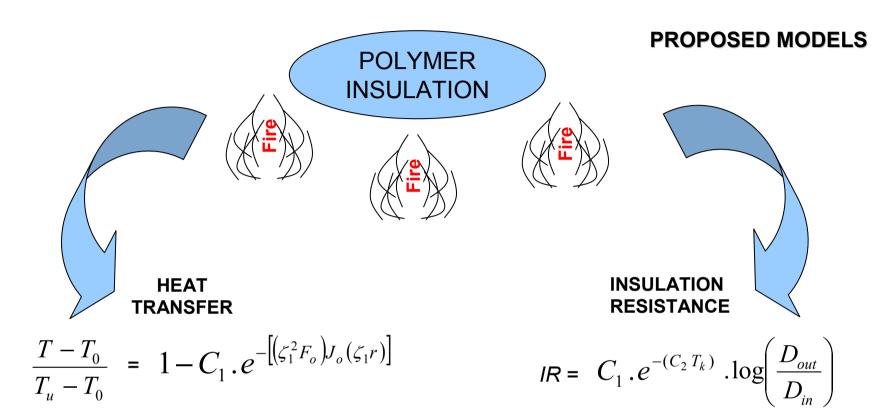
OBJETIVE

THE OBJECTIVE OF THIS RESEARCH IS TO DEVELOP PROBABILISTIC MODELS TO ESTIMATE LIKELIHOOD OF FIRE-INDUCED CABLE DAMAGE GIVEN A SPECIFIED FIRE PROFILE.

The results of this research will:

- Help to develop a consistent framework to estimate fire-induced cable failure modes likelihood
- Develop guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plants




- **BACKGROUND.**
- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 - "K FACTOR" MODEL.
- **DATA GATHERING AND ANALYSIS.**
- **DAMAGE-ENDURANCE MODEL DEVELOPMENT.**
- **RESULTS ANALYSIS.**
- CONCLUSIONS AND RECOMMENDATIONS.

PROPOSED MODELS

PHYSICS - BASED MODEL

T: inner temperature of the cable at time t.To: initial temperature of the cable (t = 0).Tu: temperature in the surrounding area at time t.

- Homogeneous and infinite cylinder
- Constant thermo-physical properties
- No internal heat generation
- No heat losses through the conductors

 D_{out} = outer diameter of the insulation (m) D_{in} = inside diameter of the insulation (m) C_1 and C_2 constant for a given material.

For most modern cable insulation materials, insulation resistance drops exponentially with increasing temperature

PROPOSED MODELS

- **BACKGROUND.**
- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 - "K FACTOR" MODEL.

DATA GATHERING AND ANALYSIS.

DAMAGE-ENDURANCE MODEL DEVELOPMENT.

- **RESULTS ANALYSIS.**
- **CONCLUSIONS AND RECOMMENDATIONS.**

DATA GATHERING

DATA SOURCES

NUREG/CR-5546, SAND 90-0696. Investigation of the Effects of Thermal Aging on the fire Damageability of Electric Cables.

NUREG/CR 6776, SAND 2002 - 0447P. Cable Insulation Resistance Measurements made during Cable Fire Tests.

EPRI 1003326. Characterization of Fire-Induced Circuit Faults: Results of Cable Fire Testing .

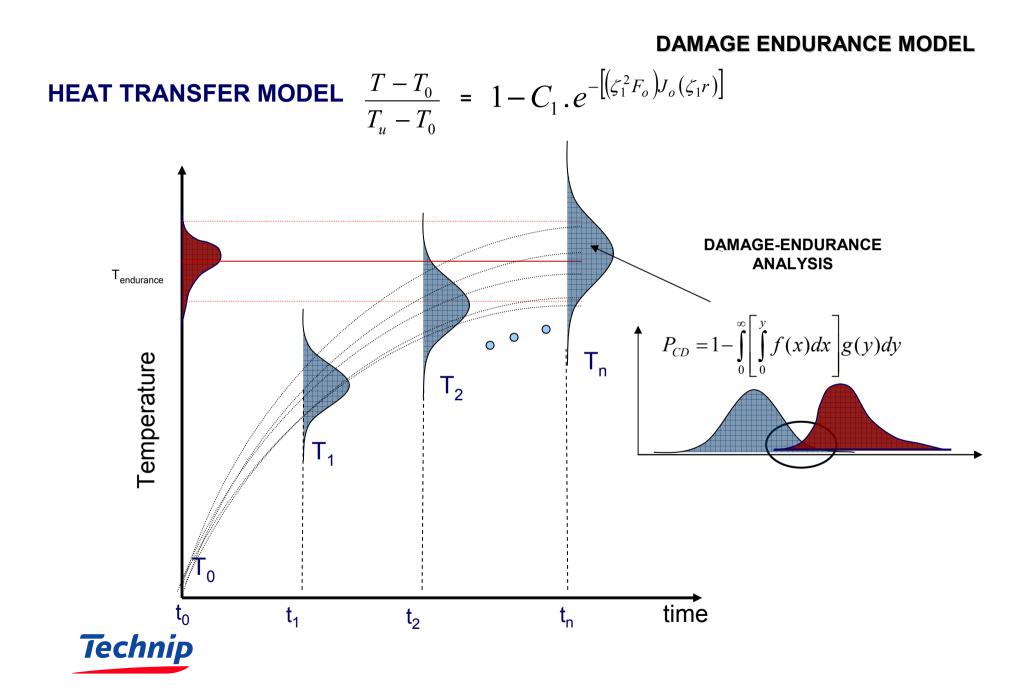
Cable Response to Live Fire (CAROLFIRE). A combined test effort involving representatives of RES, SNL, NIST, and UMD.

HEAT TRANSFER MODEL: ENDURANCE LIMIT

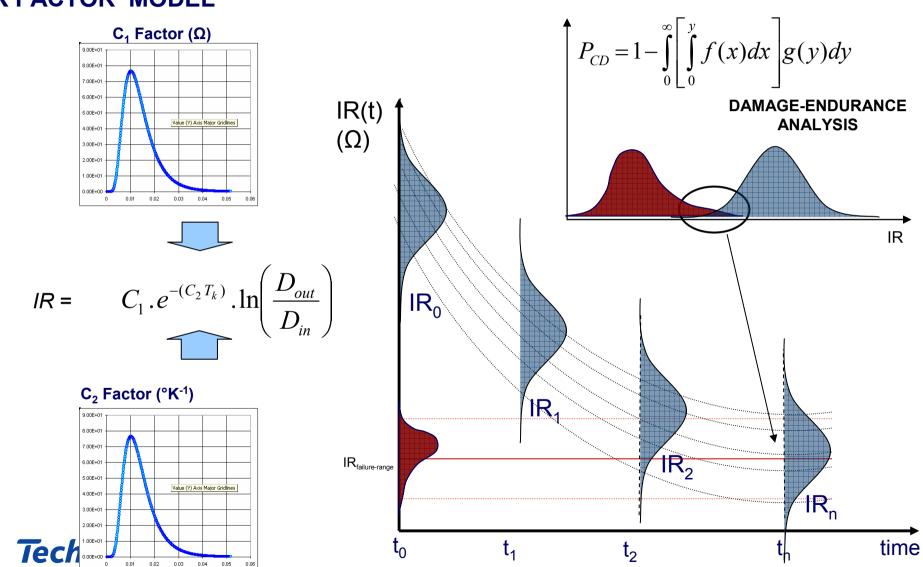
CAROLFIRE	PVC	XLPE	EPR	PE	TEFZEL ⁽¹⁾	EP ⁽¹⁾
Mean (°k)	4.93E+02	6.66E+02	6.92E+02	5.23E+02	NA	NA
Standard Deviation	1.97E+01	3.33E+01	1.44E+01	1.05E+01	NA	NA

NUREG	PVC ⁽¹⁾	XLPE	EPR	PE ⁽¹⁾	TEFZEL	EP ⁽²⁾
Mean (°k)	NA	6.58E+02	7.23E+02	NA	4.59E+02	6.51E+02
Standard Deviation	NA	3.02E+01	3.84E+01	NA	2.48E+01	3.45E+00

EPRI	PVC	XLPE	EPR	PE	TEFZEL	EP ⁽¹⁾
Mean (°k)	4.56E+02	6.72E+02	7.04E+02 🤇	4.52E+02	5.00E+02	NA
Standard Deviation	3.18E+01	4.26E+01	5.50E+01	4.08E+01	4.61E+01	NA



- **BACKGROUND.**
- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 "K FACTOR" MODEL.
- **DATA GATHERING AND ANALYSIS.**


DAMAGE-ENDURANCE MODEL DEVELOPMENT.

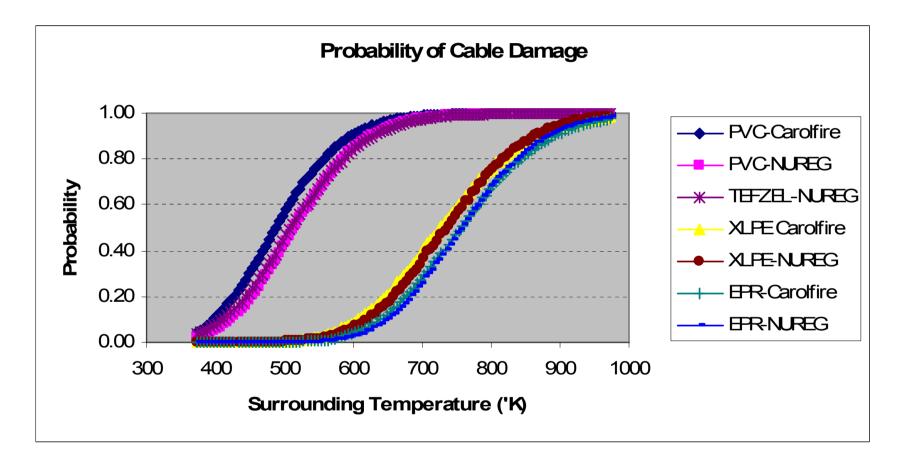
- **RESULTS ANALYSIS.**
- **CONCLUSIONS AND RECOMMENDATIONS.**

DAMAGE ENDURANCE MODEL

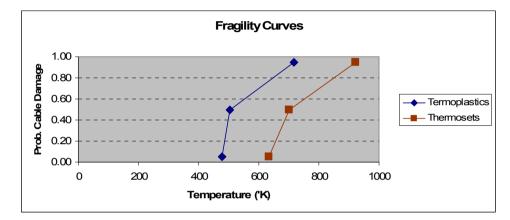
'K FACTOR' MODEL

- **BACKGROUND.**
- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 "K FACTOR" MODEL.
- **DATA GATHERING AND ANALYSIS.**
- **DAMAGE-ENDURANCE MODEL DEVELOPMENT.**
- RESULTS ANALYSIS.
- **CONCLUSIONS AND RECOMMENDATIONS.**

RESULTS

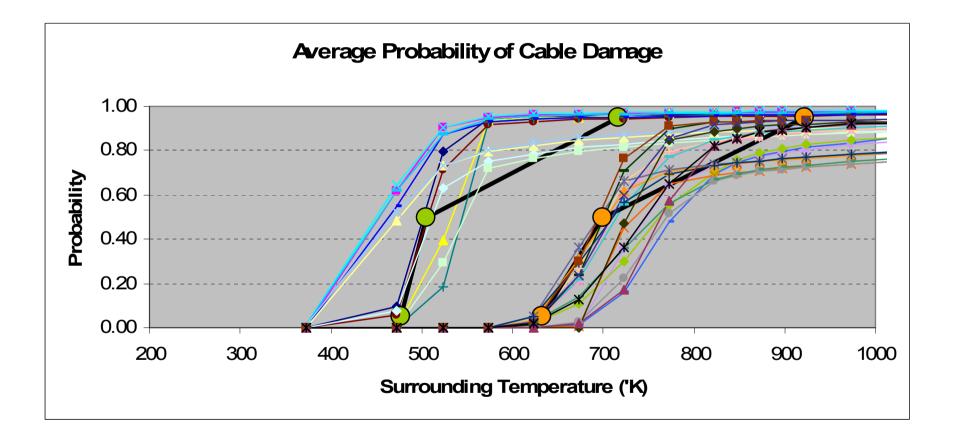

Probability of Cable Damage 1.00 0.80 0.60 Probability 0.40 0.20 0.00 700 400 500 600 300 800 900 1000 Mean Inner Temperature ('K) PVC-Carolfire PVC-EPRI \rightarrow PE-Carolfire EPR-Carolfire

HEAT TRANSFER MODEL:


RESULTS

"K FACTOR" MODEL :

FRAGILITY CURVES:


Thermoplastics:

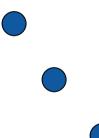
Temperature below which essentially no failure occurs Median or best estimate point	477 °K (204 °C) 505 °K (232 °C)
Temperature at which activity will almost surely occur	700 °K (427 °C)
Thermosets:	
Temperature below which essentially no failure occurs	633 °K (360 °C)
Median or best estimate point	700 °K (427 °C)
Temperature at which activity will almost surely occur	922 °K (649 °C)

Nuclear Energy Institute. (2002). <u>Guidance for Post-fire Safe Shutdown Analysis</u>. Washington DC. NEI 00-01 2002. Electrical Power Research Institute (2002). <u>Spurious Actuation of Electrical Circuits Due to Cable Fires: Results of an Expert Elicitation</u>. California, EPRI 1006961.

FRAGILITY CURVES vs. HEAT TRANSFER MODEL

- **BACKGROUND.**
- OBJECTIVE.
- PROPOSED MODELS.
 - HEAT TRANSFER MODEL.
 "K FACTOR" MODEL.
- **DATA GATHERING AND ANALYSIS.**
- **DAMAGE-ENDURANCE MODEL DEVELOPMENT.**
- **RESULTS ANALYSIS.**

CONCLUSIONS AND RECOMMENDATIONS.



CONCLUSIONS AND RECOMENDATIONS

- The estimation of fire-induced cable damage likelihood has been addressed through two different models: the heat transfer and the IR "K Factor" model.
 - * Endurance damage approach
 - * Comparison of inner cable temperature and IR to the endurance limit
- The physics-based HTM is a model capable of predicting the probability of cable damage under different thermal conditions.
 - * Enrich existing databases
 - * Develop HTM for complex cable arrangements
 - * Develop thermal properties database
- The IR "K factor" model is an empirical model that is simple to apply, but does not consider the dynamic of the thermal insult.
- Validate the models proposed for fire conditions out of the scenarios described in the fire testing programs utilized in this research.

QUESTIONS?

THANKS

