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� FIRE-INDUCED ELECTRICAL CABLES/CIRCUITS FAILURE MODES

� CONDUCTOR TO CONDUCTOR SHORTING FAILURE MODE.

� FIRE TESTING PROGRAMS (EPRI, NRC, …)

BACKGROUNDBACKGROUND

� BETTER UNDERSTANDING OF FIRE-INDUCED CABLE FAILURE MODES.

� KNOWLEDGE OF CABLE FAILURE BEHAVIOR UNDER EXTERNAL THERMAL INSULT.

� IDENTIFICATION OF INFLUENCE FACTORS TO KEY CIRCUIT FAILURES MODES.

� QUALITATIVE APPROCHES TO ESTIMATE THE PROBABILITY OF CABLE DAMAGE.



THE OBJECTIVE OF THIS RESEARCH IS TO DEVELOP 

PROBABILISTIC  MODELS TO ESTIMATE  LIKELIHOOD  OF  FIRE-

INDUCED  CABLE  DAMAGE  GIVEN  A  SPECIFIED  FIRE  PROFILE.

OBJETIVEOBJETIVE

� Help to develop a consistent framework to estimate fire-induced

cable failure modes likelihood

� Develop guidance to evaluate and/or reduce the risk associated

with these failure modes in existing and new power plants

The results of this research will:
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PHYSICS - BASED MODEL
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INSULATION

RESISTANCE
HEAT

TRANSFER

� Homogeneous and infinite cylinder

� Constant thermo-physical properties

� No internal heat generation

� No heat losses through the conductors

For most modern cable insulation

materials, insulation resistance 

drops exponentially with increasing

temperature
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T:   inner temperature of the cable at time t.

To: initial temperature of the cable (t = 0).

Tu: temperature in the surrounding area at time t.
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DATA GATHERINGDATA GATHERING

NUREG/CR-5546, SAND 90-0696.

Investigation of the Effects of Thermal Aging on the fire Damageability of 

Electric Cables.

NUREG/CR 6776, SAND 2002 - 0447P.

Cable Insulation Resistance Measurements made during Cable Fire Tests.

EPRI 1003326.

Characterization of Fire-Induced Circuit Faults: Results of Cable Fire Testing .

Cable Response to Live Fire (CAROLFIRE).

A combined test effort involving representatives of RES, SNL, NIST, and 

UMD.

DATA SOURCES



HEAT TRANSFER MODEL: ENDURANCE LIMIT

DEGRADATION ESTIMATIONDEGRADATION ESTIMATION

CAROLFIRE PVC XLPE EPR PE TEFZEL 
(1)

EP 
(1)

Mean (°k) 4.93E+02 6.66E+02 6.92E+02 5.23E+02 NA NA

Standard Deviation
1.97E+01 3.33E+01 1.44E+01 1.05E+01 NA NA

EPRI PVC XLPE EPR PE  TEFZEL EP 
(1)

Mean (°k) 4.56E+02 6.72E+02 7.04E+02 4.52E+02 5.00E+02 NA

Standard Deviation 3.18E+01 4.26E+01 5.50E+01 4.08E+01 4.61E+01 NA

NUREG PVC 
(1) XLPE EPR PE 

(1) TEFZEL EP 
(2)

Mean (°k) NA 6.58E+02 7.23E+02 NA 4.59E+02 6.51E+02

Standard Deviation NA 3.02E+01 3.84E+01 NA 2.48E+01 3.45E+00
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DAMAGE ENDURANCE MODELDAMAGE ENDURANCE MODEL

‘K FACTOR’ MODEL
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HEAT TRANSFER MODEL:

 
Probability of Cable Damage
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RESULTSRESULTS

“K FACTOR” MODEL :

Probability of Cable Damage

0.00

0.20

0.40

0.60

0.80

1.00

300 400 500 600 700 800 900 1000

Surrounding Temperature ('K)

P
ro

b
a
b
il
it
y
  
 .

PVC-Carolfire

PVC-NUREG

TEFZEL-NUREG

XLPE Carolfire

XLPE-NUREG

EPR-Carolfire

EPR-NUREG



FRAGILITY CURVES:

Fragility Curves
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Termoplastics

Thermosets

Thermoplastics:

Temperature below which essentially no failure occurs 477 °K (204 °C)

Median or best estimate point 505 °K (232 °C)

Temperature at which activity will almost surely occur 700 °K (427 °C) 

Thermosets:

Temperature below which essentially no failure occurs 633 °K (360 °C)

Median or best estimate point 700 °K (427 °C)

Temperature at which activity will almost surely occur 922 °K (649 °C)

RESULTSRESULTS

Nuclear Energy Institute. (2002). Guidance for Post-fire Safe Shutdown Analysis. Washington DC. NEI 00-01 2002. 

Electrical Power Research Institute (2002). Spurious Actuation of Electrical Circuits Due to Cable Fires: Results of an Expert Elicitation. California, EPRI 1006961. 



Average Probability of Cable Damage
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CONCLUSIONS AND RECOMENDATIONSCONCLUSIONS AND RECOMENDATIONS

The estimation of fire-induced cable damage likelihood has been addressed 

through two different models: the heat transfer and the IR “K Factor” model.

*  Endurance damage approach

*  Comparison of inner cable temperature and IR to the endurance limit 

The physics-based HTM is a model capable of predicting the probability of 

cable damage under different thermal conditions.

*  Enrich existing databases

*  Develop HTM for complex cable arrangements

*  Develop thermal properties database

The IR “K factor” model is an empirical model that is simple to apply, but does 

not consider the dynamic of the thermal insult. 

Validate the models proposed for fire conditions out of the scenarios 

described in the fire testing programs utilized in this research.
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THANKS


