
Use of PRA in Risk-Informed Classification of Piping Segments of Loviisa NPP

Kalle Jänkälä PSAM9, 20 May 2008, Hongkong

Generation Kalle Jänkälä 20 May 2008

1

Loviisa VVER-440, Finland

- Two VVER-440 Type 213 units operated by Fortum Power and Heat
- Loviisa 1 commissioned in 1977
- Loviisa 2 commissioned in 1980
- Plant design based on the former Soviet concept but
- Adapted to Finnish conditions and US safety requirements
- Power upgrade up to 510 MW in 1996-1997
- New operation licences until 2027 and 2030 (Unit 1 and Unit 2), respectively

Generation Kalle Jänkälä 20 May 2008

2

Background

- The 10 years' period ASME ISI-programme ended 2007
- RI-ISI required by the new regulatory guide in Finland
- Principles for drawing up new RI-ISI-programme were determined during the Summer-Autumn 2005
- Nuclear Authority (STUK) accepted the Plan with some modifications in August 2006
- Starting basis was the EPRI method as described in ASME XI, Appendix R, Method B
 - Applied for the whole plant
 - Relies on the existing full-scope PRA

Main principles

- All systems of the plant are covered
- Risk evaluations based on full scope PRA covering
 - internal and external events
 - Full, low and non-power states
- Consequences evaluated and classified according to Conditional Core Damage Probability (CCDP) and Large Early Release Probability (CLERP)
- Piping failure possibility is evaluated by expert judgement on qualitative basis
- Reviewed in independent panel meetings
- Only piping

Risk classification

CCDP from PSA

			Consequence Category					
			N.A.	Low 10 ⁻⁶ <u><</u> CCDP <10 ⁻⁵	Medium 10 ⁻⁵ <u><</u> CCDP <10 ⁻⁴	High CCDP <u>></u> 10 ⁻⁴		
group of experts	Failure Potential Category	High	Risk Category 7	Risk Category 5	Risk Category 3	Risk Category 1		
		Medium	Risk Category 7	Risk Category 6	Risk Category 5	Risk Category 2		
		Low	Risk Category 7	Risk Category 7	Risk Category 6	Risk Category 4		

Screening limit CCDP < 10^{-6} and CLERP < 10^{-7}

Generation Kalle Jänkälä 20 May 2008 5

assessment by

Qualitative

Identification of systems

All systems:

- Safety systems
 - emergency cooling, residual heat removal, extinguishing systems, ...
 - ventilation, seal water, ...
- Operating systems
 - primary circuit, steam lines, turbine, generatori, ...
 - turbine lubrication, stator cooling, ...
- Others
 - water pipes, sewer pipes, compressed air, ...

All media

- Water,steam
- Nitrogen, air, Hydrogen
- Oil
- Chemicals

6

Empty pipes

Consequence evaluation (worst possible leakage)

- Initiating event
 - CCDP/CLERP contributions from all Plant Operating States
- System failure, unavailability
 - CCDP = 1 exp(-CCDF \cdot t)
 - t = exposure time that the pipe failure or its consequences can exist
 - 24 h if immediately detected
 - Half of the test, maintenance or inspection interval
 - 25 years if detected only in an accident
 - Correspondingly for CLERP

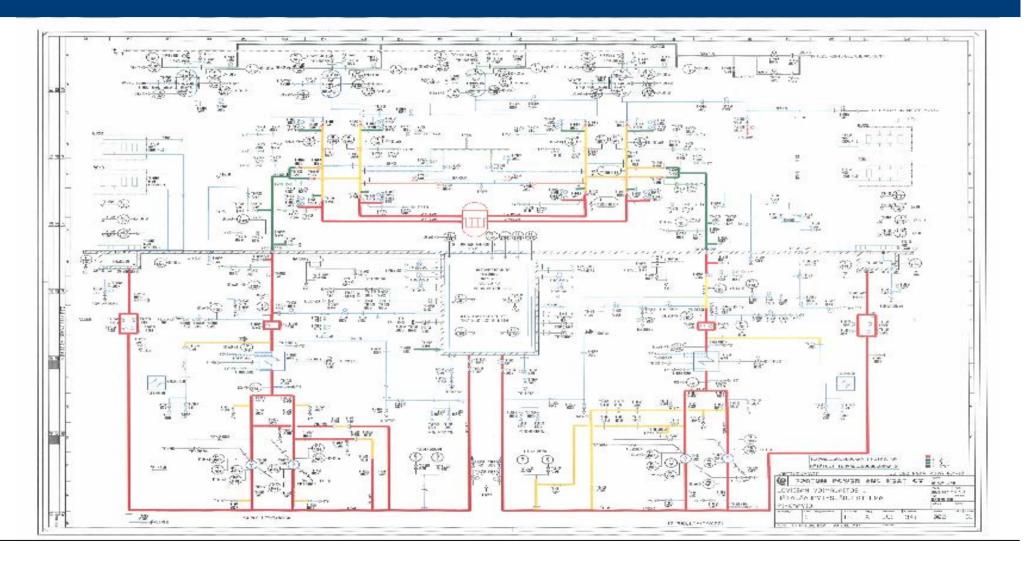
CCDP/CCDF and CLERP/CLERF for > 6000 events and 15 POSs

Consequence category

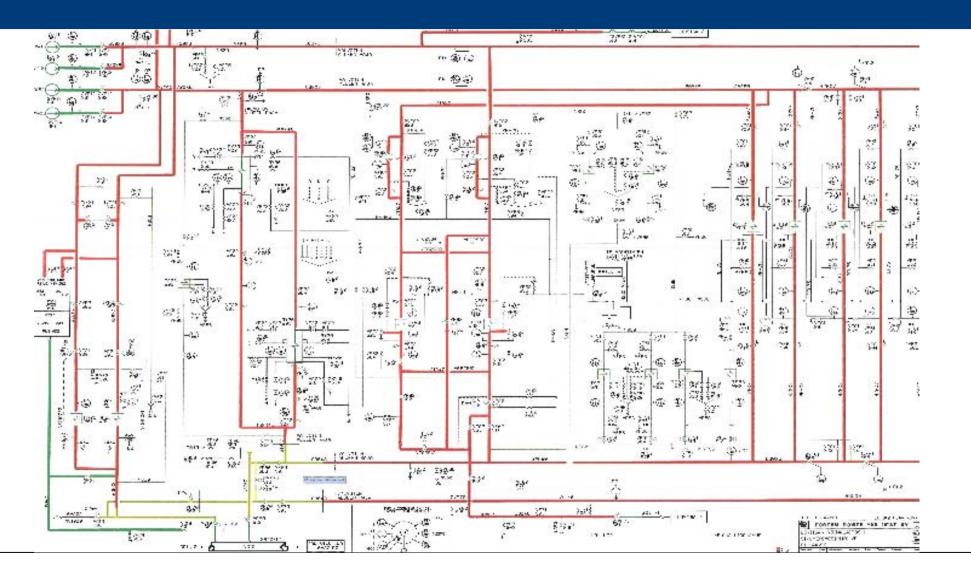
Consequenc	e category	Level 1	Level 2
0		<1E-6	<1E-7
3		>1E-6	>1E-7
2		>1E-5	>1E-6
	1	>1E-4	>1E-5
1	1+	>1E-3	>1E-4
	1++	>1E-2	>1E-3
	1+++	>1E-1	>1E-2

Scope

Lev 1	Lev 2	
<1E-6	<1E-7	0
>1E-6	>1E-7	3
>1E-5	>1E-6	2
>1E-4	>1E-5	1
>1E-3	>1E-4	1+
>1E-2	>1E-3	1++
>1E-1	>1E-2	1+++


RL	Feed water	1+++	SE	Turbine governor	2	SB	Turbine bearings	0
RA	Steam lines	1++	ST	Hydrogen	2	SD	Condenser	0
RY	SG blow down	1++	SU	Sealing oil	2	SG	Gland steam	0
ТН	LPSI	1++	UV	Air conditioning	2	SH	Turbine drain system	0
UJ	Fire water	1++	UX	CO ₂	2	SS	Stator water cooling	0
YA	Primary circuit	1++	XU	External spray	2	TL	Ventilation	0
YB	Steam generators	1++	EY	Diesel generators	3	TR	Sewage water treatment	0
YP	Pressurizer	1++	RV	Deionate supply	3	TS	Radioactive gaseous waste	0
RR	RHR	1+	SA	Turbine casing	3	TT	Solid active waste	0
тс	Coolant purification	1+	TD	Boron water treatment	3	ΤW	Liquid active waste	0
ΤG	fuel pool cooling	1+	TE	Coolant let-down	3	UA	Demineralisation plant	0
ТJ	HPSI	1+	ТК	Normal make-up	3	UC	Other water treatment	0
TP	Nitrogen supply	1+	TN	Supply system	3	UH	Dosing equipment	0
ΤQ	Spray	1+	TU	Decontamination	3	UK	Drinking water	0
ΤV	Sampling	1+	ΤZ	Special sewerage	3	UL	Sewerage	0
ΤY	Drainages and vents	1+	VU	XU cooling	3	US	Compressed air	0
VC	Main sea water	1+	XL	Ice condencer	3	UT	Other gas supplies	0
VF	Service water	1+	KT	Gas turbine	0	UU	Aux. boiler plant	0
YD	PCP	1+	RB	Super heating	0	UW	Venting and heating	0
RC	Turbine by-pass	1	RD	HP bleeding points	0	VA	Sea water treatment	0
RQ	Aux. steam	1	RE	Main condensate purif.	0	VE	Condenser purification	0
ТВ	Chem. supply	1	RF	Sealing water for MFW	0	VG	Conventional interm. cooling	0
TF	Intermediate cooling	1	RH	LP bleeding points	0	XM	Ice condenser cooling	0
ТМ	Pool water treatment	1	RM	Main condensate	0	XN	Circulating air fans	0
UP	Diesel fuel tank	1	RN	Auxiliary condensate	0	ХР	Ice manufacturing	0
YC	Reactor vessel	1	RT	Pipe drains	0	XW	Hydrogen control	0
SC	Lubrication	2	RU	Drain and return system	0	YF	Thermal shield	0
						YZ	Plant protection	0

Generation Kalle Jänkälä 20 May 2008


9

Emergency core cooling (LPSI)

Service water system

Risk categories of the consequence category High

System	Risk	System	Risk
Pressurizing	1	Diesel generator	4
Feed water	1	Residual heat removal	4
Main steam	2	Supply of chemicals	4
Turbine by-pass	2	Fuel pond cooling	4
Auxiliary steam	2	Low pressure safety injection	4
Steam generators blow-down	2	Pond water treatment	4
Coolant purification	2	Supply systems (nitrogen, gas, air)	4
High pressure safety injection	2	Containment spray	4
Circulating water	2	Sampling (reactor building)	4
Service water	2	Drainages and vents	4
Primary circuit	2	Diesel generator fuel oil	4
Steam generator pipelines	2	Containment external spray	4
Primary circulating pumps	2	Reactor vessel, measurement	4
Fire fighting water	2		

Systems in bold blue font belong to the old ASME ISI program.

Risk categories of the cons. cat. Medium and Low

System with Medium consequence		System with Low consequence	Risk
Turbine lubrication		Secondary makeup	7
Turbine governor and protection	5	Turbine casing	7
Generator hydrogen	5	Boron water treatment	7
Turbine sealing oil	5	Prepurification of coolant drainage	7
Air conditioning		Primary makeup	7
Ice condenser		Primary supply (liquid, steam)	7
Fire and gas protection	6	Plant and equipment decontamination	7
		Liquid active waste storage	7
		Special sewerage	7
		Cooling of the containment external spray	7

Systems in bold blue font belong to the old ASME ISI program.

RI-ISI brought several new features

- Inspection locations of the primary circuit piping are reduced but new systems are included (radiation exposure will be reduced)
- Small diameter primary piping (new methods needed)
- Consequence differences of redundant safety systems
- Exceptionally high consequence targets need special attention
- Empty and pressure-free piping need reasonable new methods

Other benefits

- Extensive documentation in electronic form (old tehcnical drawings)
- Co-operation between experts of different organizations and professional areas
- Total risk will decrease

Summary of the features of this approach

- All systems containing water, gases, chemicals and empty,...
- All operating modes (15) were taken into account when quantifying CCDP and CLERP values
- Shutdown risks were important in many consequence evaluations
- Exposure times were carefully estimated
- High consequence categories can be caused by pipe breaks that lead to basic events only – usually they come from initiating events
- Piping selection by screening on the basis of CCDP and CLERP
- Indication of exceptionally high consequence values
- Redundant identical pipelines can have different consequence categories (e.g. because of layout)

