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Presentation Outline

� Presentation Outline

• Dynamic PRA Methods

• General Overview of ADS-IDAC

� Thermal Hydraulic Nuclear Plant Model

� Operator Model

• Dynamic Performance Influencing Factors

• Information Filtering and Perception

• Future Research Activities
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Dynamic PRA 

� Compared to conventional human reliability analysis 
techniques, dynamic simulation methods can improve 
the modeling of several important factors:

• Feedback between operator and reactor plant

• Timing and sequencing of events

• Success criteria

• Dependencies arising from situational context

� But, dynamic methods introduce several challenges:

• Truncation techniques needed to limit sequence 
explosion 

• Quality of results dependent on realism of the 
underlying plant and operator models

• Interpretation of results

University of Maryland
Center for Risk and Reliability
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ADS-IDAC Overview

� Accident Dynamics Simulator with the 
Information, Decision, and Action in a Crew 
Context Cognitive Model (ADS-IDAC)

� UMD has been developing, improving, and  
refining ADS-IDAC for nearly two decades

University of Maryland
Center for Risk and Reliability
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Thermal-Hydraulic Model

� RELAP5 Thermal-Hydraulic Engine

• Recognized thermal hydraulic analysis tool

• Existing RELAP plant models can be readily adapted 
to the ADS-IDAC environment

� Plant models require some modifications 

• Interactive controls and instrumentation

• Realistic representation of plant systems, protective 
features, and controls

� The current three-loop PWR plant model includes:
• 200 indicators

• 90 controls

• 80 alarms

University of Maryland
Center for Risk and Reliability
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Operator Model

� Operator actions guided by high-level goals 
and problem solving strategies

University of Maryland
Center for Risk and Reliability

Implements EOPs

• Active & Passive Information 
Gathering

• Memorized Rule-Based Actions

• Follow Written Procedures

Maintain Safety Margin
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Gathering

• Memorized Rule-Based Actions

Monitoring

Actions driven by 
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situational 
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Operator Model

� Operator profile specifies tendencies, 
preferences, and capabilities
• PIF profiling factors

• Utilization of memorized information

• Problem solving preferences

• Threshold for diagnosing an accident condition

• Procedure pacing and adherence 

• Information handling capabilities

� Operator knowledge base defines 
procedures, mental models, and heuristic 
rules

University of Maryland
Center for Risk and Reliability
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Dynamic Performance Influencing 
Factors (PIFs)

� Three dynamic PIF factors have been 
implemented in ADS-IDAC:

• Information Loading

• Time Constraint Loading

• Criticality of System Condition

� Dynamic PIFs currently support:

• Procedure step skipping module

• Information gathering process

University of Maryland
Center for Risk and Reliability
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Dynamic PIFs: Information Load

� Information Load PIF based 
on average information 
processing rate for each 
operator
• “Information” includes 

alarms, control panel 
interactions, and crew 
communication

• Includes both passive and 
active information load

� Related to operator task 
load 

University of Maryland
Center for Risk and Reliability
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Dynamic PIFs: 
Time Constraint Load

� Measures amount of time available 
until a process parameter passes a 
critical threshold
• Parameters and thresholds can be uniquely 

defined for each operator
• PIF value depends on amount of time 

available and operator’s high level goal 
(e.g., normal operation vs. accident 
mitigation)

� Related to time pressure perceived 
by the operator

University of Maryland
Center for Risk and Reliability
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Dynamic PIFs: 
Criticality of System Condition

� Criticality of System Condition 
modeled after the Safety 
Parameter Display System 
(SPDS)
• Measures plant deviation from 

nominal (safe) conditions
• Each operator can use a unique 

combination of parameters, 
thresholds, and weighting 
factors

� Related to the operator’s 
perception of the severity of 
the plant state 

University of Maryland
Center for Risk and Reliability
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Dynamic PIFs: Example

� Example Application –
Steam Generator Tube 
Rupture
• Operators utilize 

procedure following 
strategy

� Dynamic PIFs reflect 
both plant dynamics 
and operator activities
• Briefings and delays
• Degrading and 

improving plant 
status

• Periods of high task 
loads

University of Maryland
Center for Risk and Reliability
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Information Perception & Filtering

� All operator decisions and actions are based on 
perceived information

Raw data from the thermal-hydraulic model subject to 
filtering process

• Operator must gather information

• Biasing filter can distort information

� Differences between perceived and actual plant data 
can drive the operator toward error forcing 
situations

• Incorrect situational assessment leads to 
inappropriate action-rule activation

• Information distortion adversely impacts 
assessment of component, system, or plant state

University of Maryland
Center for Risk and Reliability
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Modeling Potential Error Events:
Branching Rules

� ADS-IDAC generates 
a discrete dynamic 
event tree (DDET) 
based on the 
application of simple 
branching rules

� Feedback from the 
plant model, 
information 
perception, and PIFs 
all influence the 
activation of 
branching rules

� The branching path 
from the initiating 
event to a final end 
state define the 
scenario trajectory

Error events occur when the sequence 
of branching events result in the 
failure to meet a plant need...
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Conclusions

� Recent improvements to the ADS-IDAC code 
have dramatically improved the realism of 
plant and operator models.
• RELAP5 Plant Model
• Operator Goals and Problem Solving Strategies
• Dynamic PIFs  
• Information Processing

Taken together, these factors reinforce the 
man-machine feedback loop and improve the 
ability of ADS-IDAC to model crew-to-crew 
variabilities and dependencies

University of Maryland
Center for Risk and Reliability
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Future Work

� Knowledge base expansion
� Model calibration

• Heuristic rules
• Pace and timing of operator actions
• Operator preferences/tendencies

� Validation
• Halden HRA Comparison Study

� User interface
• Facilitate ADS-IDAC model development, 

revisions, and simulation execution

� Post processing tools
• Sequence grouping and visualization
• Importance measures and metrics

University of Maryland
Center for Risk and Reliability
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UMD ADS-IDAC Project

Questions....

University of Maryland
Center for Risk and Reliability


