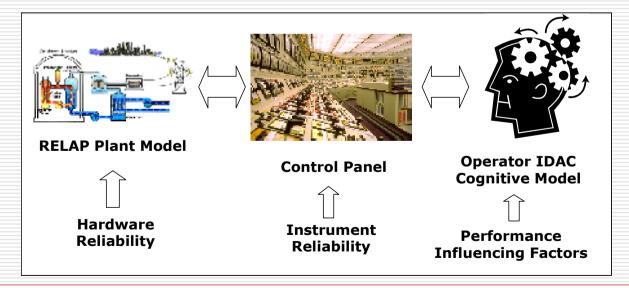
Dynamic PRA Approach for the Prediction of Operator Errors

Kevin Coyne Ali Mosleh

Center for Risk and Reliability University of Maryland College Park, MD

Presentation Outline

- Presentation Outline
 - Dynamic PRA Methods
 - General Overview of ADS-IDAC
 - Thermal Hydraulic Nuclear Plant Model
 - Operator Model
 - Dynamic Performance Influencing Factors
 - Information Filtering and Perception
 - Future Research Activities


Dynamic PRA

- Compared to conventional human reliability analysis techniques, dynamic simulation methods can improve the modeling of several important factors:
 - Feedback between operator and reactor plant
 - Timing and sequencing of events
 - Success criteria
 - Dependencies arising from situational context
- But, dynamic methods introduce several challenges:
 - Truncation techniques needed to limit sequence explosion
 - Quality of results dependent on realism of the underlying plant and operator models
 - Interpretation of results

ADS-IDAC Overview

- Accident Dynamics Simulator with the Information, Decision, and Action in a Crew Context Cognitive Model (ADS-IDAC)
 - UMD has been developing, improving, and refining ADS-IDAC for nearly two decades

University of Maryland

Thermal-Hydraulic Model

RELAP5 Thermal-Hydraulic Engine

- Recognized thermal hydraulic analysis tool
- Existing RELAP plant models can be readily adapted to the ADS-IDAC environment
- Plant models require some modifications
 - Interactive controls and instrumentation
 - Realistic representation of plant systems, protective features, and controls
- □ The current three-loop PWR plant model includes:
 - 200 indicators
 - 90 controls
 - 80 alarms

University of Maryland Center for Risk and Reliability

Operator Model

Operator actions guided by high-level goals and problem solving strategies

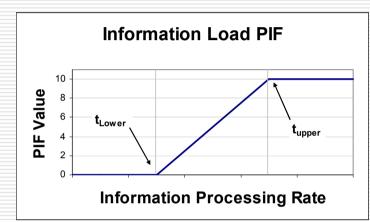
Goal	Strategies	Comment
Maintain Normal Operation	 Passive Information Gathering Memorized Rule-Based Actions 	
Troubleshoot Abnormal Conditions	 Active & Passive Information Gathering Memorized Rule-Based Actions Knowledge-Based Actions 	Actions driven by operator's situational assessment
Monitoring	 Active & Passive Information Gathering Memorized Rule-Based Actions 	
Maintain Safety Margin	 Active & Passive Information Gathering Memorized Rule-Based Actions Follow Written Procedures 	Implements EOPs

University of Maryland

Operator Model

- Operator profile specifies tendencies, preferences, and capabilities
 - PIF profiling factors
 - Utilization of memorized information
 - Problem solving preferences
 - Threshold for diagnosing an accident condition
 - Procedure pacing and adherence
 - Information handling capabilities
- Operator knowledge base defines procedures, mental models, and heuristic rules

Dynamic Performance Influencing Factors (PIFs)

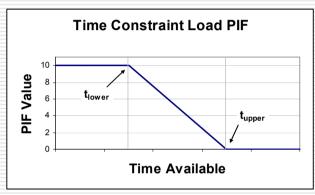

- Three dynamic PIF factors have been implemented in ADS-IDAC:
 - Information Loading
 - Time Constraint Loading
 - Criticality of System Condition
- Dynamic PIFs currently support:
 - Procedure step skipping module
 - Information gathering process

Dynamic PIFs: Information Load

- Information Load PIF based on average information processing rate for each operator
 - "Information" includes alarms, control panel interactions, and crew communication
 - Includes both passive and active information load
- Related to operator task load

$$PIF_{InfoLoad} = 10 \left[\frac{\dot{I}_{PerceptionRate} - \dot{I}_{LowerThreshold}}{\dot{I}_{UpperThreshold} - \dot{I}_{LowerThreshold}} \right]$$

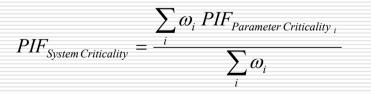
University of Maryland


Center for Risk and Reliability

- Measures amount of time available until a process parameter passes a critical threshold
 - Parameters and thresholds can be uniquely defined for each operator
 - PIF value depends on amount of time available and operator's high level goal (e.g., normal operation vs. accident mitigation)
- Related to time pressure perceived by the operator

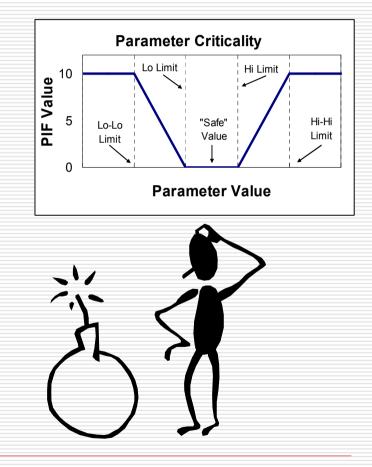
$$t_{i,available} = \frac{P_i - P_{i,Threshold}}{\dot{P}_i}$$

$$PIF_{i,TimeConstrain} = 10 \left[1 - \frac{(t_{i,available} - t_{lower})}{(t_{upper} - t_{lower})} \right]$$

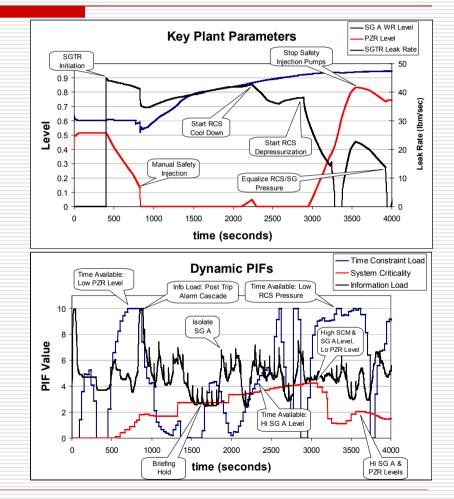


University of Maryland

Center for Risk and Reliability


Dynamic PIFs: Criticality of System Condition

- Criticality of System Condition modeled after the Safety Parameter Display System (SPDS)
 - Measures plant deviation from nominal (safe) conditions
 - Each operator can use a unique combination of parameters, thresholds, and weighting factors
- Related to the operator's perception of the severity of the plant state



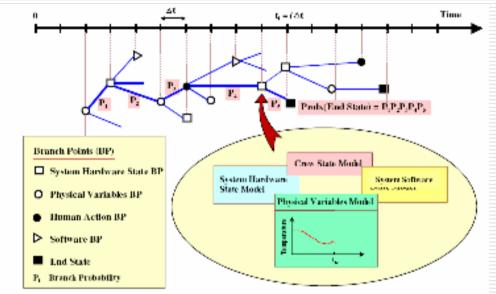
University of Maryland

Dynamic PIFs: Example

- Example Application Steam Generator Tube Rupture
 - Operators utilize procedure following strategy
- Dynamic PIFs reflect both plant dynamics and operator activities
 - Briefings and delays
 - Degrading and improving plant status
 - Periods of high task loads

Information Perception & Filtering

- All operator decisions and actions are based on perceived information
 - Raw data from the thermal-hydraulic model subject to filtering process
 - Operator must gather information
 - Biasing filter can distort information
- Differences between perceived and actual plant data can drive the operator toward error forcing situations
 - Incorrect situational assessment leads to inappropriate action-rule activation
 - Information distortion adversely impacts assessment of component, system, or plant state



Modeling Potential Error Events: Branching Rules

- ADS-IDAC generates a discrete dynamic event tree (DDET) based on the application of simple branching rules
- Feedback from the plant model, information perception, and PIFs all influence the activation of branching rules
 The branching path from the initiating event to a final end

state define the

scenario trajectory

Error events occur when the sequence of branching events result in the failure to meet a plant need...

Conclusions

- Recent improvements to the ADS-IDAC code have dramatically improved the realism of plant and operator models.
 - RELAP5 Plant Model
 - Operator Goals and Problem Solving Strategies
 - Dynamic PIFs
 - Information Processing

Taken together, these factors reinforce the man-machine feedback loop and improve the ability of ADS-IDAC to model crew-to-crew variabilities and dependencies

Future Work

- □ Knowledge base expansion
- Model calibration
 - Heuristic rules
 - Pace and timing of operator actions
 - Operator preferences/tendencies
- Validation
 - Halden HRA Comparison Study
- User interface
 - Facilitate ADS-IDAC model development, revisions, and simulation execution
- Post processing tools
 - Sequence grouping and visualization
 - Importance measures and metrics

UMD ADS-IDAC Project

University of Maryland