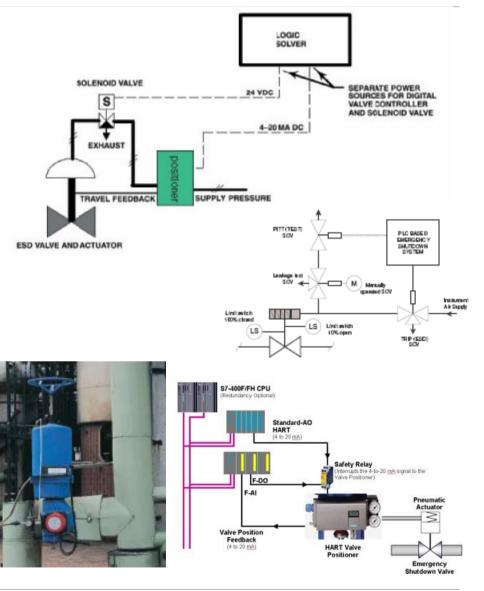


Evaluating the PFD of Safety Instrumented Systems with Partial Stroke Testing

Luiz Fernando Oliveira Vice-President DNV Energy Solutions South America

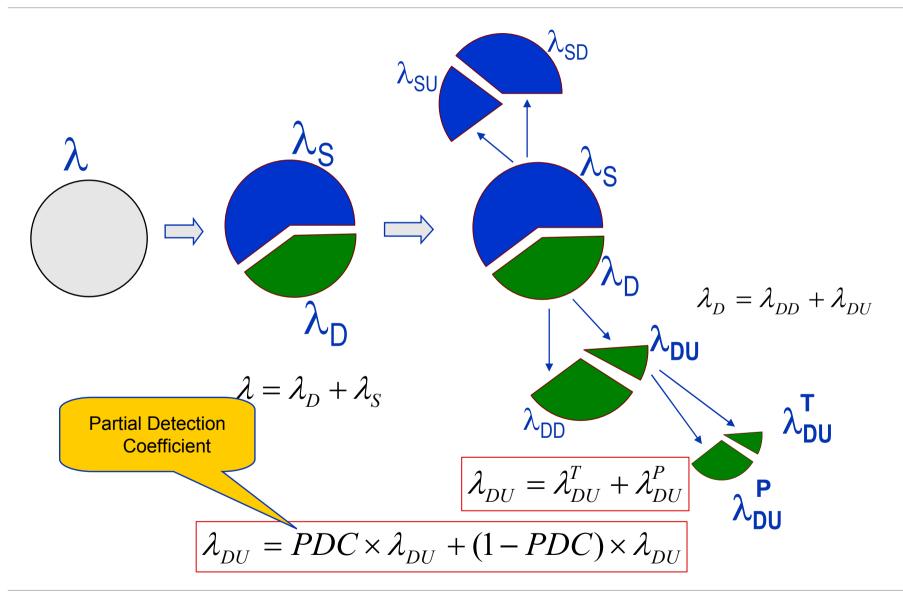
- Started doing SIL analysis in Brazil in 1999
- Looked at the analytical equations given in IEC 61508
 - Given only for four possible configurations (1001, 1002, 2002, 2003)
 - Used them but did not pay too much attention to them
- In 2004 got funds to develop a SIL analysis software for DNV internal use throughout the world
 - Had to include a much larger number of possible configurations
 - Why not all of them? KooN?
- Several choices to calculate them
 - Fault tree engine? Markov engine? Analytical equations? Numerical Integration?
- Chose to use analytical equations: simpler and faster
- Then came the problem: a generic KooN equation is not difficult to obtain
 - But had to revert to those given in IEC 61508
 - Clients always ask if the calculations are in accordance with the Standard


- First task was to derive the equations in IEC 61508
 - This proved not so simple
 - Not enough details are given in the Standard
 - Assumptions and approximations
 - Could not find anywhere else
 - Biggest difficulty: uses both detected (revealed) and undetected (unrevealed) dangerous failure rate which one to assume?
- And the Partial Stroke Testing problem?
 - Recognized as a very good solution in many situations
 - Had to be solved together
 - Not given in IEC 61508 (only one equation for non-perfect testing could use the same equation?)
- Whole problem solved after several tries
 - Deduction of PFD equation for KooN configuration without and with PST capabillity

29 May 2008

Slide 4

What is Partial Stroke Testing?


- Ability to test some failure modes of a block valve without any significant variation in plant throughput
- Several makers and models
- Apply small torque and monitor corresponding valve movement
- Tests failure mode "valve stuck open"
- Do not test the whole blocking function
 - Latter is only tested in a full test
- Advantages
 - Less plant shutdowns for testing
 - Lower PFD value

Failure Rate Taxonomy without and with PST

• Average value of PFD can be written as the product of

- Frequency of entering the failed state, and
- Time it remains in the failed state

$$PFD_{koon} = \Phi_{koon} * T_{koon}$$

- Average value of PFD can be written as the product of
 - Frequency of entering the failed state, and
 - Time it remains in the failed state
- Dangerous failure rate has two contributions: detected (revealed) and undetected (unrevealed)

$$\lambda_{D} = \lambda_{DD} + \lambda_{DU}$$

- Two possible approaches:
 - Behaves as "revealed"
 - Behaves as "unrevealed"

KooN System without PST

- Two possible approaches:
 - Behaves as "revealed"
 - Behaves as "unrevealed"
- In both cases:
 - the mean duration the channel spends in a failed state is taken approximately as a weighted average of the two contributions
 - For a single channel (IEC 61508)

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$$

- For two channels (IEC 61508)

$$t_{GE} = \frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{3} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$$

- Generalizing for KooN channels

$$T_{koon} = \frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{n - k + 2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$$

© Det Norske Veritas AS. All rights reserved

For koon system:

- Frequency of entering the failed state: n-k already and (n-k+1)th failed

$$\Phi_{koon} = K_{koon} \times \lambda_D \times (\lambda_D t_{CE})^{n-k}$$

$$K_{koon} = k \times C_n^{n-k} = k \times \frac{n!}{k!(n-k)!}$$

$$\Phi_{koon} = \frac{n!}{(k-1)!(n-k)!} \lambda_D^{n-k+1} t_{CE}^{n-k}$$
Reproduces the equations in IEC 61508

$$PFD_{koon} = \frac{n!}{(k-1)!(n-k)!} \lambda_D^{n-k+1} t_{CE}^{n-k} \times \left[\frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{n-k+2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR \right]$$

- For koon system:
 - Frequency of entering the failed state: (a little more laborious)

$$\Phi_{koon} = \frac{n!}{(k-1)! (n-k+1)!} \lambda_D^{n-k+1} T_1^{n-k}$$

$$PFD_{koon} = \frac{n!}{(k-1)! (n-k+1)!} \lambda_D^{n-k+1} T_1^{n-k} \times \left[\frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{n-k+2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR \right]$$

For $T_1 \approx 2t_{CE}$ $t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \left(\frac{T_1}{2} + MTTR \right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$
when $\lambda_{DD} << \lambda_{DU}$
Reproduces the equations in IEC 61508 $MTTR = 0$

and $MTTR \ll T_1$

PFD with PST ("Revealed Failure")MANAGING RISKMANAGING RISKTest interval
for total test**PFD**_{1001PST} = (1 - PDC) × $\lambda_{DU} \left(\frac{T_1}{2} + MTTR \right) + PDC × \lambda_{DU} \left(\frac{T_2}{2} + MTTR \right) + \lambda_{DD} MTTR$

For 1002 system:

$$PFD_{1002PST} = 2\lambda_{DU}^2 t_{CE-PST} \cdot t_{GE-PST}$$

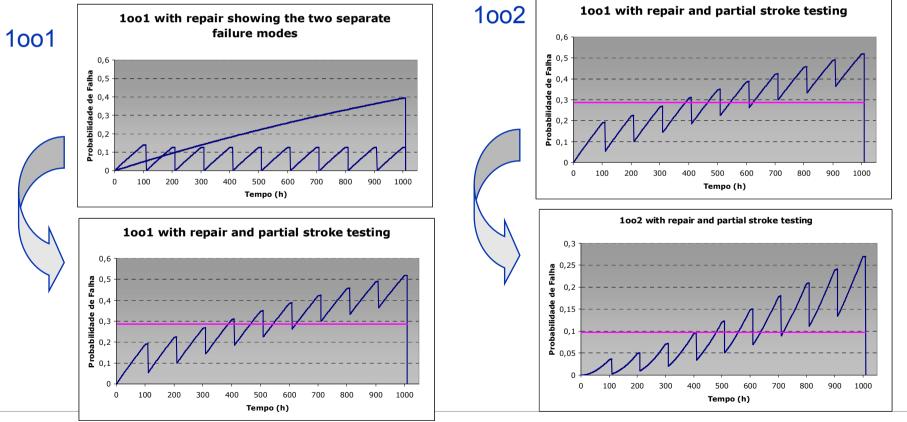
$$t_{CE-PST} = \frac{(1 - PDC) \times \lambda_{DU}}{\lambda_D} \left(\frac{T_1}{2} + MTTR\right) + \frac{PDC \times \lambda_{DU}}{\lambda_D} \left(\frac{T_2}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$$
$$t_{GE-PST} = \frac{(1 - PDC) \times \lambda_{DU}}{\lambda_D} \left(\frac{T_1}{3} + MTTR\right) + \frac{PDC \times \lambda_{DU}}{\lambda_D} \left(\frac{T_2}{3} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} MTTR$$

© Det Norske Veritas AS. All rights reserved

• Generalizing for a koon configuration:

$$PFD_{koon-PST} = \frac{n!}{(k-1)!(n-k)!} \lambda_D^{n-k+1} (t_{CE-PST})^{n-k} \times T_{koon-PST}$$

$$t_{CE-PST} = \frac{(1-PDC) \times \lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{2} + MTTR\right) + \frac{PDC \times \lambda_{DU}}{\lambda_{D}} \left(\frac{T_{2}}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$


$$Test interval for total test$$

$$T_{koon-PST} = \frac{(1-PDC) \times \lambda_{DU}}{\lambda_{D}} \left(\frac{T_{1}}{n-k+2} + MTTR\right) + \frac{PDC \times \lambda_{DU}}{\lambda_{D}} \left(\frac{T_{2}}{n-k+2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_{D}} MTTR$$

Numerical Approach

- Numerical evaluation of system unreliability function
 - Unreliability function described as numerical function
- Numerical integration of unreliability function over test interval
 - Obtain average PFD value

Data Used

Description	Value
Interval between complete tests $[(T_1 (h)]$	43800
Interval between partial tests $[T_2(h)]$	730/365
Dangerous failure rate [$\lambda_{\rm D}$ (/h)]	2,70E-06
Diagnostic coverage coefficient [DC _D]	0,25
Partial test detection coefficient [PDC]	0,8
Beta factor for undetected dangerous failures [ß]	0,05
Beta factor for detected dangerous failures $[\beta_D]$	0,05
Mean time between restoration [MTTR (h)]	24,0

Architecture	Equation 17	Equation 18 (with T ₁ =2t _{CE-PST})	Numerical Approach
1001	9.53E-03	9.53E-03	9.42E-03
1002	1.21E-04	1.21E-04	1.15E-04
2002	1.91E-02	1.91E-02	1.87E-02
1003	1.31E-06	1.74E-06	1.57E-06
2003	3.64E-04	3.64E-04	3.41E-04
3003	2.86E-02	2.86E-02	2.79E-02
1004	1.33E-08	2.66E-08	2.29E-08
2004	5.22E-06	6.96E-06	6.21E-06
3004	7.28E-04	7.28E-04	6.76E-04
4004	3.81E-02	3.81E-02	3.70E-02

Architecture	Eq.(17) w/o PST	Eq.(17) w PST (730 h)	Eq.(17) w PST (365 h)
1001	4,44E-02	9,53E-03	9,23E-03
1002	4,60E-03	5,86E-04	5,64E-04
2002	8,88E-02	1,91E-02	1,85E-02
1003	2,33E-03	4,77E-04	4,63E-04
2003	9,35E-03	8,05E-04	7,70E-04
3003	1,33E-01	2,86E-02	2,77E-02
1004	2,23E-03	4,76E-04	4,62E-04
2004	2,67E-03	4,81E-04	4,66E-04
3004	1,65E-02	1,13E-03	1,08E-03
4004	1,78E-01	3,81E-02	3,69E-02

Architecture	Eq.(17) w/o PST	Eq.(17) w PST (730 h)	Eq.(17) w PST (365 h)
1001	4,44E-02	9,53E-03	9,23E-03
1002	4,60E-03	5,86E-04	5,64E-04
2002	8,88E-02	1,91E-02	1,85E-02
1003	2,33E-03	4,77E-04	4,63E-04
2003	9,35E-03	8,05E-04	7,70E-04
3003	1,33E-01	2,86E-02	2,77E-02
1004	2,23E-03	4,76E-04	4,62E-04
2004	2,67E-03	4,81E-04	4,66E-04
3004	1,65E-02	1,13E-03	1,08E-03
4004	1,78E-01	3,81E-02	3,69E-02

De SIL 0 para SIL 1

Architecture	Eq.(17) w/o PST	Eq.(17) w PST (730 h)	Eq.(17) w PST (365 h)
1001	4,44E-02	9,53E-03	9,23E-03
1002	4,60E-03	5,86E-04	5,64E-04
2002	8,88E-02	1,91E-02	1,85E-02
1003	2,33E-03	4,77E-04	4,63E-04
2003	9,35E-03	8,05E-04	7,70E-04
3003	1,33E-01	2,86E-02	2,77E-02
1004	2,23E-03	4,76E-04	4,62E-04
2004	2,67E-03	4,81E-04	4,66E-04
3004	1,65E-02	1,13E-03	1,08E-03
4004	1,78E-01	3,81E-02	3,69E-02

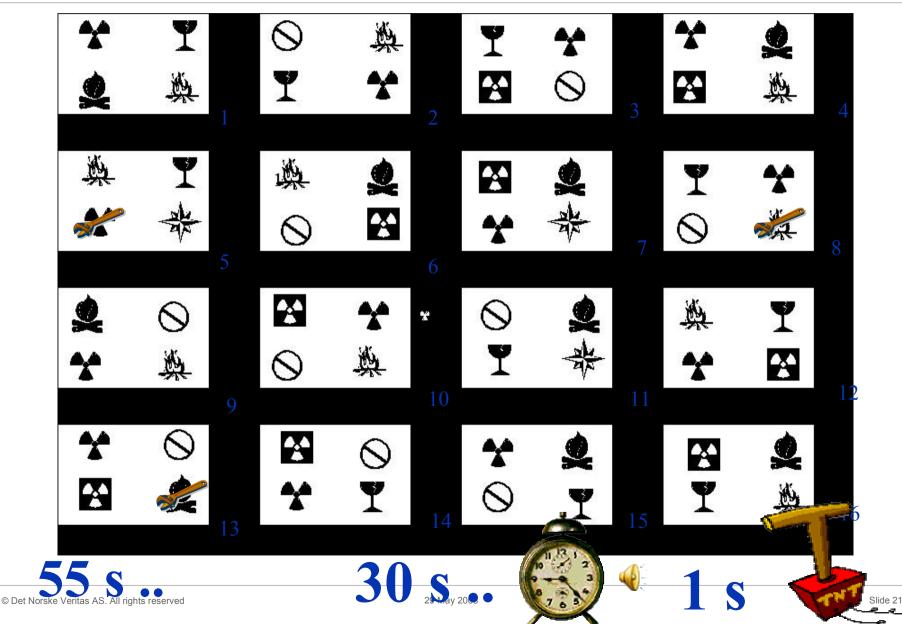
De SIL 1 para SIL 2

Architecture	Eq.(17) w/o PST	Eq.(17) w PST (730 h)	Eq.(17) w PST (365 h)
1001	4,44E-02	9,53E-03	9,23E-03
1002	4,60E-03	5,86E-04	5,64E-04
2002	8,88E-02	1,91E-02	1,85E-02
1003	2,33E-03	4,77E-04	4,63E-04
2003	9,35E-03	8,05E-04	7,70E-04
3003	1,33E-01	2,86E-02	2,77E-02
1004	2,23E-03	4,76E-04	4,62E-04
2004	2,67E-03	4,81E-04	4,66E-04
3004	1,65E-02	1,13E-03	1,08E-03
4004	1,78E-01	3,81E-02	3,69E-02

De SIL 2 para SIL 3

Final Comments

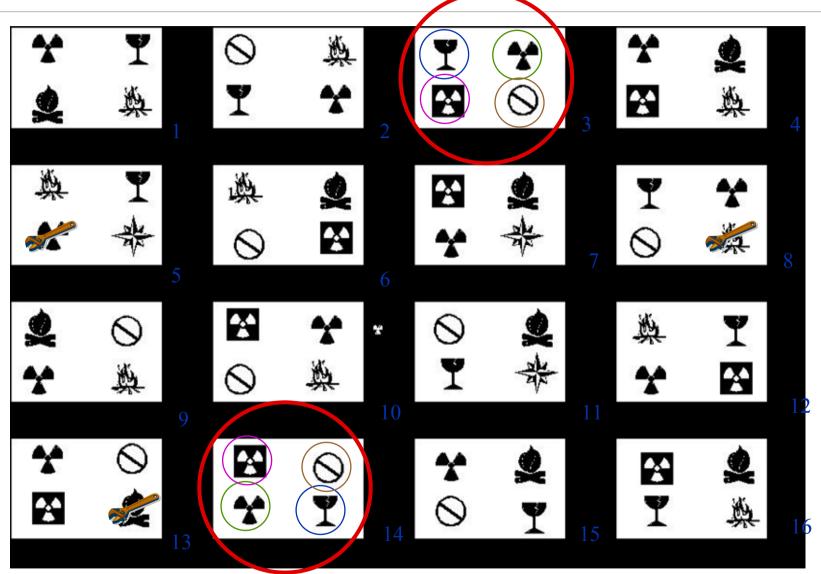
- Two different analytical equations for koon systems with PST were presented
 - Considering revealed or unrevealed failure
- "Revealed" seems to be the approach used in IEC 61508
- Results of both equations are similar
- Results compare very well to those of a numerical approach
- Ability to undergo PST generally increases the SIL value by one
- PST significantly reduces the number of plant shutdowns
- Analytical equations can be used even for very reduntdant configurations and large proof test intervals



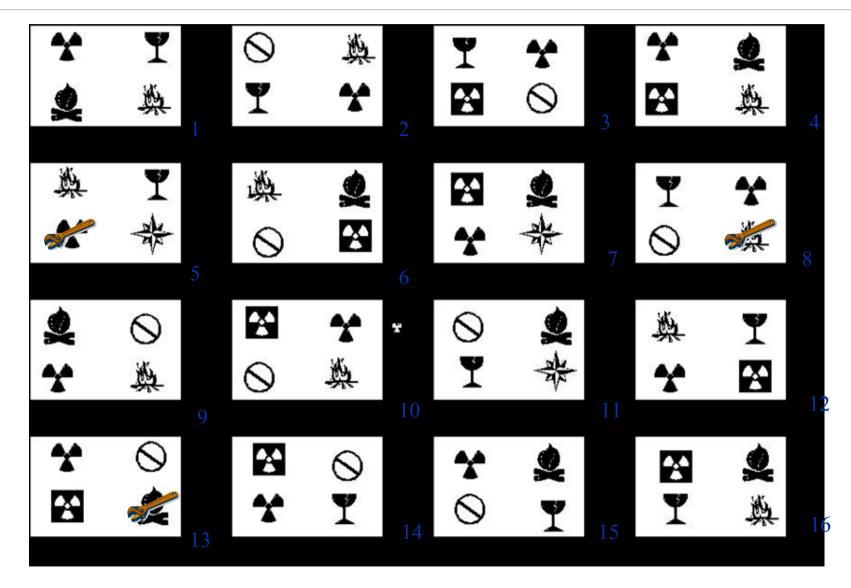
I will give you a one-minute test ...

If you already knew it, please don't answer it, thank you.

What are the two squares with the same symbols In different orders? You have one minute



And here is the answer...



And now look again...

Can you find them now?

Everything looks easy after it is solved.

Many thanks, everyone!!!