INDUSTRIAL SAFETY CULTURE – LEADING INDICATORS AND APPLICATION

Paul Amyottea, Faisal Khanb, Micaela Demichelac & Norberto Piccininic

aDalhousie University, Halifax, Canada
bMemorial University, St. John’s, Canada
cPolitecnico di Torino, Torino, Italy
OUTLINE

- Introduction
 - Safety Culture
 - Hierarchy of Controls/Inherent Safety
 - Safety Management Systems/Incident Investigation
- Conceptual Framework for Safety Culture Assessment
 - Safety Culture Indicators
 - Lagging vs Leading Indicators
- Case Study: Westray Coal Mine Explosion
 - Incident Description and Causation
 - Application of Proposed Safety Culture Indicators
- Concluding Remarks
INTRODUCTION

Scope

- Enhancement of industrial safety through recognition of the importance of safety culture and corporate leadership as expressed within a safety management system

Motivation

- Protection of people, environment, assets and production
- Provision of an assessment framework and case study highlighting safety culture as an integral component of safety management systems
Safety Culture

With thanks to co-author Prof. Norberto Piccinini of the Politecnico di Torino

Account of a violent explosion which happened in the flour-warehouse, at Turin, December the 14th, 1785…

\begin{itemize}
 \item by Count Morozzo
 \item from the Memoirs of the Academy of Sciences of Turin
\end{itemize}
“Ignorance of the fore-mentioned circumstances, and a culpable negligence of those precautions which ought to be taken, have often caused more misfortunes and loss than the most contriving malice: it is therefore of great importance that these facts should be universally known, that public utility may reap from them every profitable advantage.”
BP Texas City, TX, USA
March 23, 2005: www.csb.gov
Process Safety Management

- **Process safety**: the operation of facilities that handle, use, process or store hazardous materials in a manner free from episodic or catastrophic incidents.

- **Process safety management**: the application of management principles and systems to the identification, understanding and control of process hazards to prevent process-related injuries and incidents (fire, explosion, toxicity, corrosivity).

- **CCPS: Guidelines for Technical Management of Chemical Process Safety**

- **MIACC → CSChE: PSM Guide (3rd edition)**
Process Safety Management (PSM)

1. Accountability: objectives and goals
2. Process knowledge and documentation
3. Capital project review and design procedures
4. Process risk management
5. Management of change
6. Process and equipment integrity
7. Human factors
8. Training and performance
9. Incident investigation
10. Company standards, codes and regulations
11. Audits and corrective actions
12. Enhancement of process safety knowledge
1. Accountability: Objectives and Goals

- Process safety is a **corporate value**
- Requires management **commitment** and **leadership**
- Hopkins (2005): *Safety, Culture and Risk*
 - Safety culture
 - Collective mindfulness
 - Risk-awareness
- Hierarchy of controls
Hierarchical Approach

INHERENT SAFETY

PASSIVE ENGINEERED (ADD-ON) SAFETY

ACTIVE ENGINEERED (ADD-ON) SAFETY

PROCEDURAL (ADMINISTRATIVE) SAFETY
Royal Australian Air Force
F111
Deseal/Reseal Program

The absence of any commitment to the hierarchy of controls is another manifestation of the priority of platforms over people (Hopkins, 2005).
Corporate Leadership

- Safety Culture (reporting, just, learning, flexible cultures) → 9. Incident Investigation
- Collective Mindfulness (preoccupation with failure, reluctance to simplify, sensitivity to operations, commitment to resilience)
- Risk Awareness (synonymous with collective mindfulness which is closely related to safety culture)

Hopkins (2005): Safety, Culture and Risk
CONCEPTUAL FRAMEWORK FOR SAFETY CULTURE ASSESSMENT

Concept # 1: Safety culture and incident investigation are explicitly linked via just, reporting and learning cultures, and implicitly linked via flexible culture and inherent safety.

Concept # 2: Whether process safety indicators are lagging or leading is of secondary importance to whether they measure the effectiveness of the various controls in the risk control system (i.e. elements of PSM system).

Both concepts directly or indirectly from Hopkins (2005 & 2007)
Demonstration of a Commitment to...

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Possible Metrics</th>
</tr>
</thead>
</table>
| | ➢ Number of incident reports
 | ➢ Number of near-miss reports
 | ➢ Employee/management surveys |
| | ➢ Number of incident reports
 | ➢ Number of near-miss reports
 | ➢ Measure of quality of reports |
| | ➢ Measure of outputs of reporting and investigating (e.g. lessons learned) |
| | ➢ Makeup/qualifications of investigation and remedial action teams |
| | ➢ Measure of integration within incident investigation and all PSM elements |
CASE STUDY: WESTRAY COAL MINE EXPLOSION
Domino Loss Causation Model

<table>
<thead>
<tr>
<th>Lack of Management Control</th>
<th>Basic Causes</th>
<th>Immediate Causes</th>
<th>Incident</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate:</td>
<td>Personal Factors</td>
<td>Substandard Practices</td>
<td>Event</td>
<td>Threshold Limit</td>
</tr>
<tr>
<td>Program</td>
<td>Job Factors</td>
<td>Substandard Conditions</td>
<td></td>
<td>Unintended Harm or Damage</td>
</tr>
<tr>
<td>Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Threshold Limit
Safety Culture Indicators

- **Commitment to a Just Culture**
 - Blame-filled, fault-finding culture
 - Low worker morale
 - Management intimidation of workers who raised safety issues
 - Worker fear of reprisal
 - Employee dismissal for raising safety concerns

- **Commitment to a Reporting Culture**
 - Four roof falls in two months following mine opening (seriousness downplayed by management)
 - Numerous unreported rock fall near-misses
 - Rock fall emphasis (due to production concerns) resulting in methane/coal dust hazards being neglected
Safety Culture Indicators

Commitment to a Learning Culture
- An ineffective incident investigation program = No lessons learned
- Most basic safety practices non-existent

Commitment to a Flexible Culture
- Impossible to achieve given management mindset and specific practices
- Workers without experience promoted to supervisory positions due to production demands
- Little training in safe work practices and hazard identification
Safety Culture Indicators

Commitment to the Principles of Inherent Safety

<table>
<thead>
<tr>
<th>Principle</th>
<th>Hazard Avoidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize</td>
<td>Methane: Degassification</td>
</tr>
<tr>
<td>Substitute</td>
<td>Ventilation: Forcing instead of exhaust</td>
</tr>
<tr>
<td>Moderate</td>
<td>Coal Dust: Roadway consolidation; rock dust</td>
</tr>
<tr>
<td>Simplify</td>
<td>Methane: Reliable, robust monitoring</td>
</tr>
</tbody>
</table>
CONCLUDING REMARKS

- Presented a concept and some thoughts for assessment of process safety culture
 - Link PSM element of incident investigation with four safety subcultures and four inherent safety principles
- Case study helpful, but a negative proof is not conclusive
- Work on metrics is needed and is underway in our group (emphasis on offshore safety)
ACKNOWLEDGEMENTS

Financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada