9th International Probabilistic Safety Assessment and Management (PSAM) Conference

18-23 May 2008 * Hong Kong * China

Paolo Trucco and Ottavio GrandePOLITECNICO DI MILANODepartment of Management, Economics and Industrial Engineering

Agenda

- 1. Resilience in complex socio-technical systems
- 2. Application of Fuzzy Cognitive Maps to resilience analysis
 - FCM features
 - Static and dynamic analysis
 - Steps of the proposed method
- 3. Modelling of Civil Defence System with FCM
- 4. Identification of critical functions and factors
- 5. Resilience analysis of the First Emergency Response
- 6. Discussion and future developments

1 Resilience in complex socio-technical systems

Resilience Engineering represents a new way of thinking about safety

3

- How to evaluate resilience of **complex socio-technical systems**?
 - Multi-actor and complex organisations
 - Dependencies made of several "soft" factors and interactions
 - Chronic lack of data and direct observations (unique events)
- Resilience in Social-Ecological Systems (Holling, 1973; Walker et al., 2004):

"is the capacity of an ecosystem to tolerate disturbance without collapsing into a qualitatively different state that is controlled by a different set of processes. A resilient ecosystem can withstand shocks and rebuild itself when necessary"

as applied to integrated systems has three characteristics

- The **amount of change** the system can undergo
- The **self-organization** capability of the system
- The capacity for learning and adaptation

1 The case of Civil defence organizations: actors & functions in the Italian system

Schematic representation of the socio-technical system:

Main functions during the First Emergency Response (Incident Command System scheme):

 Safety (Fire Service/ Armed Forces/ Police/ Em.med. service)

- Information (Dept of CD/ Prefect/...)
- Liaison (President/ Dept of CD/...)
- Operations (Fire Service)
- Planning (Dept of CD)
- Logistics (Dept of CD/ Fire Service)
- Finance & Administration (President/ Dept of CD/ Region/...)

Goals and main processes of the First Emergency Response (FER)

Organisational Factors

P. Trucco and O. Grande – Resilience Analysis of Civil Defense Organization

- A Cognitive Map is a signed directed graph (Axelrod, 1976) used to represent the causal relations (signed edges) among concepts (nodes)
- **FCM** (Kosko, 1986) is a cognitive map which can be processed based on fuzzy logic
- Main areas of application are:
 - Scenario analysis and Decision Making
 - Management of human resources
 - Process control
 - FER Management (Tegarden, 2003; Monmonier, 1997)
 - FER Training (Alexander, 2004)

6

P. Trucco and O. Grande – Resilience Analysis of Civil Defense Organization

Adjacency Matrix (weights of causal relationships)

- Threshold function (f): discrete or continue (logistic or tanh)
- Continues until a fixed-point attractor a limit cycle or a chaotic attractor is reached

P. Trucco and O. Grande – Resilience Analysis of Civil Defense Organization

2 Typical analysis with FCM

- Static Analysis
 - **In-degree** is the total strength of the connections coming into a variable
 - **Out-degree** is the total strength of the connections exiting from a variable

$$id(C_i) = \sum_{i=1}^n |e_{ij}|$$
$$od(C_i) = \sum_{j=1}^n |e_{ij}|$$

Centrality (total degree):

$$c(C_i) = id(C_i) + od(C_i)$$

- Dynamic analysis
 - Forward simulation is used to analyse the evolution of a FCM when a concept is activated
 - Backward simulation is used to identify all the paths within a FCM to achieve a specific objective

2 Overview of the proposed method

2 Overview of the proposed method

3

FCM of the First Emergency Response

Code Concept Code Concept C1 -0.52 C4 Standard 0,15 **C1 Event magnitude** C10 +0.17+0,67 Communication Training Stress C14 **C2** C11 +0.43) 60 C2 (rescue squad) (rescue squad) -0.26 +0.40-0.33 +0,67 Quick event +0.46-0,30 0,49 C12 **C**3 **Role uncertainty** -0.38 +0.80 +0,69 definition -0.60 -0,74 +0.18 +0.6 +0.23,34 +0.486 43 Different Correct use of +0,32 -0,21 **C4** C13 priorities -0,80 resources C11 -0,57_{±0.6}, -0,46=-0,39= **C16** -0,47 0,37,34 +0.2226Lack-of or weak Training&Educatio +0,33 -0,31 **C5** C14 0-9,47 +0.31 n (population) -0,16 +0,16 +0,18 procedures -0.27/ C13 +0,62 -0.89 -0.33 -0,20 ///// -0,31 +0.65 +0.23 **C6** Competition -0,85 C17 C15 +0,21-**Conflict of** +0.85**C7 Decision making** C15 +0,27,37 -0.38 procedures +0.84.76 +0.22 +0.22 +0.44-0.50 +0,49 -0,72 Experience -0.79 +0.62**C**8 C16 Communication -0,26 -0,41 -0,49 (rescue squad) -0.34 +0.58 0.25 Panic C12 Efficient resource -0,65 +0.79**C**9 C17 -0.22 0 34 (population) allocation C10 -0,67 +0,80+0.85+0.34+0,17 C9 -0,67 C8

3 Quantification of the CFM for FER

Data analysis

From 8 experts (n) with different (λ)

- Years of experience
- Role and responsibility
- Training and background
- Research collaborations
- Commitment

$$W_{i} = \frac{\lambda_{i}}{\lambda_{1} + \ldots + \lambda_{n}} \quad i = 1, \ldots, n \qquad \sum_{i=1}^{n} W_{i} = 1$$

$$\begin{pmatrix} 1 & n & \dots & 1 & n \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

$$A = \left(\frac{1}{n}\sum_{k=1}^{n} w_k a_{1k}, \frac{1}{n}\sum_{k=1}^{n} w_k a_{2k}, \frac{1}{n}\sum_{i=1}^{n} w_k a_{3k}\right) \Longrightarrow e_{ij}$$

	Cl	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	<i>C17</i>
C1	0	0,83	-0,66	-0,52	-0,24	-0,49	-0,20	0,31	-0,89	- 0	-0,59	0,69	0,46	0,17	0,69	0,67	0,65
C2	0,67	- 0	-0,78	-0,78	-0,64	-0,78	-0,34	0,81	-0,70	0	-0,65	0,53	0,67	0,77	0,82	0,78	0,75
C3	-0,18	-0,17	- 0	0,78	0,22	0,73	0,10	0	0,71	0	0,74	-0,58	-0,34	0	-0,34	-0,36	-0,59
C4	0	-0,15	0,40	0	0	0,49	0	-0,17	0,11	0	0,37	-0,37	-0,30	0	-0,57	-0,50	-0,60
C5	-0,55	-0,69	0,53	0,50	0	0,58	0	-0,16	0,52	0	0,80	-0,47	-0,43	0	-0,80	-0,74	-0,60
C6	0	-0,21	0,44	0,37	0,20	0	0	-0,08	0,25	0	0,47	0	-0,21	0	-0,52	-0,32	-0,50
<i>C</i> 7	-0,26	-0,20	0,57	0,18	0,40	0,47	0	0	0,17	0	0,52	-0,22	-0,25	0	-0,49	-0,38	-0,40
C8	0,60	0,61	-0,72	-0,33	-0,51	-0,37	0	0	-0,67	0	-0,76	0,80	0,58	0,51	0,79	0,62	0,79
C9	0	0	0	0	0	0	0	0	0	0,32	0,70	0	0	0	-0,22	-0,20	0
C10	0	0	0,36	0,37	0	0,22	0	0,34	0,85	0	0,85	-0,34	-0,50	0	-0,41	-0,37	-0,26
C11	-0,26	0	0,10	0,13	0	0,22	0	0	0,49	0	0	-0,61	-0,21	0	-0,65	-0,67	-0,50
C12	0	0	-0,43	-0,46	0	0	0	. 0	-0,67	0	-0,67	0	0,71	0	0,84	0,61	0,72
C13	0	0,32	0	0	0	-0,16	0	0	-0,34	0	-0,47	0,27	0	0,48	0,32	0,40	0,41
C14	>	0,43	0	0	0	0	- 0	0	-0,85	0	-0,38	0,08	0	0	0,17	0,18	0
C15	0	0	0	-0,34	0	-0,31	0	0	-0,65	0	-0,31	- 0	0,65	0	0	0,28	0,83
C16	0	0,23	-0,39	-0,33	0	-0,31	0	0	-0,79	0	-0,57	0,33	0,33	0	0,62	0	0,42
C17	0	0	0	0	0	-0,23	0	0	0	0	-0,27	0,44	0,23	0	0,21	0,18	0

POLITECNICO DI MILANO

4 Identification of critical factors

Code	Concept	Indegree	Outdegree	Centrality
C2	Training (rescue squad)	3,83	10,47	14,30
C11	Stress (rescue squad)	9,09	3,83	12,92
C15	Decision making	8,45	3,37	11,82
C16	Communication	7,27	4,32	11,59
C3	Role uncertainty	5,37	5,84	11,21
C12	Quick event definition	5,74	5,11	10,85
C1	Standard Communication	2,52	8,06	10,58
C8	Experience (rescue squad)	1,88	8,67	10,54
C 9	Panic (population)	8,66	1,43	10,09
C5	Lack of or poor procedures	2,22	7,37	9,59
C17	Efficient resource allocation	8,00	1,58	9,58
C4	Different priority	5,09	4,03	9,13
C13	Correct use of resources	5,88	3,16	9,04
C6	Competition	5,34	3,57	8,91
C10	Event magnitude	0,32	4,87	5,18
C7	Conflict of procedures	0,64	4,50	5,14
C14	Training & Education (population)	1,93	2,08	4,01

- System resilience to external disturbances
 - An increased event magnitude (C10) results in a reduction of FER performance ...

	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17
C10	-1	-1	1	1	1	1	1	-1	1	1	1	-1	-1	-1	-1	-1	-1

... but a simultaneous **quicker event definition (C12)** would absorb the disturbance

	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17
C12	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0

 The resolution of conflicts within procedures (C7) or a more efficient allocation of resources (C17) are not effective resources for system resilience

	C1	C2	С3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17
C 7	-1	-1	1	1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	-1	-1
C17	-1	-1	1	1	1	1	1	-1	1	1	1	-1	-1	-1	-1	-1	1

- System resilience to internal organizational failures:
 - the case of poor cooperation (C4 and C6) event definition resources allocal **Decision Making** Communication Latent Failure Technical & Managerial Resource ð Active Operational Process S **Defective Operational Process** 6 5 8 9 10 12 13 11 a) Decision Making Communication resources alloc Ħ ice (rescue squad) 1 2 3 4 5 5 7 В 9 10 raining Experi 2 3 5 11 12 13 14 15 16 9 10 -1 b)

POLITECNICO DI MILANO

6 Discussion and future developments

16

- The Fuzzy Cognitive Map supported the identification of:
 - Training exercises and test runs as the most critical function of the FER (highest value of centrality)
 - Other functions and resources for FER resilience against internal failures:
 - tools and processes for a quick definition of the event (C12)
 - standardization of communication means and protocols (C1)
 - good mixed experience of rescue squad (C8)
- Further developments of the proposed method are in progress:
 - Extended set of factors (concepts)
 - Better knowledge capitalization (more extensive experts' elicitation);
 - Validation procedure to assess the degree of coherence of the knowledge captured by the FCM.

	Direct	paths	Indirect paths				
Influenced concepts	Number	%	Number	%			
Decision Making (C15)	6	37,50%	10	62,50%			
Communication (C16)	4	25,00%	12	75,00%			
Resource allocation (C17)	3	18,75%	13	81,25%			
Total	13	27,08%	35	72,92%			

P. Trucco and O. Grande – Resilience Analysis of Civil Defense Organization

9th International Probabilistic Safety Assessment and Management (PSAM) Conference

18-23 May 2008 * Hong Kong * China

Paolo Trucco

paolo.trucco@polimi.it

POLITECNICO DI MILANO

Department of Management, Economics and Industrial Engineering