PSAM9, Hong Kong, May 18th-23th 2008

## Modeling of human and organizational impacts for system risk analyses

### A. Léger, C. Duval, R. Farret, P. Weber, E. Levrat, B. Iung

aurelie.leger@cran.uhp-nancy.fr aurelie.leger@edf.fr

Nancy-Université

A. Léger









Current situation Sector-based analyses

UMR 7039

Nancy-Université

57

**edf** 

INERIS

**Scientific contribution** 

Methodology proposal for the **risk analysis modeling of complex sociotechnical systems** ...

Based on an **unified formalization and a system knowledge structuring** (functional, dysfunctional, behavioral and organizational knowledge) ...

To use the model for:

1. estimating the occurrence probability of risky scenarios,

2. **evaluating** barriers impacts on system components and on its global performances,

3. ordering barriers according to their efficiency ...

By taking **Bayesian networks** as modeling tool.







A. Léger

#### Part 1 : System characteristics (1/3)

Part 2 : Human and organizational dimensions modeling Part 3 : Application

Conclusions & Perspectives

## **Conceptual frame**



#### Part 1 : System characteristics (2/3)

Part 2 : Human and organizational dimensions modeling Part 3 : Application Conclusions & Perspectives PSAM9, Hong Kong, May 18th-23th 2008

## **Human dimension**







じて

#### Part 1 : System characteristics (3/3)

PSAM9, Hong Kong, May 18th-23th 2008

Part 2 : Human and organizational dimensions modeling Part 3 : Application Conclusions & Perspectives

## **Organizational dimension**

| Object of study | Organizational factors that <b>impact</b> human actions                                                                                                                                                                                                                               | Grganizational<br>factors<br>Berner component<br>Human Human                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Objectives      | Identifying the organization's<br>`health'                                                                                                                                                                                                                                            | Intrinsic Initial Operational Availability Availability of barrier variable           |
| Characteristics | <ul> <li>Pathogenic organizational factors</li> <li>Aggregation of convergent signs that allow the characterization of system safety</li> <li>Issued from case and accident restriction</li> </ul>                                                                                    | ors<br>(markers, signs and symptoms)<br>a negative influence on the<br>eport analyses |
| Representation  | <ul> <li>Shortcomings in the organization of</li> <li>Failure in daily safety management</li> <li>Weakness of control bodies</li> <li>Poor handling of organizational control bit of the design hyperical sectors</li> <li>No re-examining of the design hyperical sectors</li> </ul> | culture of safety<br>t<br>mplexity<br>k experience<br>ootheses                        |

Nancy-Université

Hanc Percent

**INERIS** 

eDF

CENTRE NATIONAL DE LA RECHTECHE SCENTROUE

UMR 7039

CRAN

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling (1/4) Part 3 : Application Conclusions & Perspectives

### **Model objectives**

Main objective Estimating human action effectiveness considering its organizational context, enabling thereafter an estimation of safety barriers availability

Detailed objectives

- 1. Impacts of the organization on the collective
- 2. Impacts of the **collective on action effectiveness**
- 3. Impacts of the **organization on this effectiveness**
- 4. Diagnosis of critical situations **Identification of most influent variables**
- 5. Information concerning an action can be obtained Yet implemented

**Feedback experience or experts judgments** Not yet implemented

Impacts of the organization and other actions



## Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling (2/4) Part 2 : Application

Part 3 : Application

#### Conclusions & Perspectives

## **Impacts identification method**



#### Part 1 : System characteristics **Part 2 : Human and organizational dimensions modeling (3/4)** Part 3 : Application

Conclusions & Perspectives

## **Generic configuration**

|                     | Pathogenic Organizational Factors |      |     |      |      |    |      |  |  |
|---------------------|-----------------------------------|------|-----|------|------|----|------|--|--|
| Indicators          | SOCS                              | FDSM | WCB | PHOC | DIFE | PP | NRDH |  |  |
| De                  |                                   |      |     | X    |      | X  |      |  |  |
| Ai                  | X                                 |      | X   |      | X    | X  | X    |  |  |
| Tr                  |                                   | X    | X   | X    | X    | X  |      |  |  |
| Ex                  |                                   | X    |     |      |      | X  |      |  |  |
| Rws                 | X                                 | X    | X   | X    |      | X  |      |  |  |
| Cf                  |                                   |      |     | X    | X    | X  | X    |  |  |
| Cmgd                | X                                 | X    |     | X    | X    | X  |      |  |  |
| Rtc                 |                                   |      | X   |      | X    | X  | X    |  |  |
| Fe                  | X                                 | X    |     | X    | X    | X  |      |  |  |
| Human action stages |                                   |      |     |      |      |    |      |  |  |
| Preparation (P)     | X                                 | X    | Х   | X    | X    | X  | X    |  |  |
| Execution (E)       | X                                 | X    |     | X    | Х    | X  |      |  |  |
| Closing(C)          |                                   | X    | X   | X    | X    | X  | X    |  |  |

Observations

ns - All the POF **do not impact** all the action indicators and stages,

- All of these factors are **represented**,
- Different **meanings** could lead to a somewhat different configuration,
- Simplifications can be done for specific applications.





#### Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling (4/4) Part 3 : Application

Conclusions & Perspectives

| Ouantification         | method |
|------------------------|--------|
| <u> vaantinttation</u> | metroa |

|    |    | Б  | a  | Б  | A                     |                    |      |                           |     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|----|----|----|----|-----------------------|--------------------|------|---------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n  |    |    |    | В  | Non Degraded (ND)     | Degraded (De)      |      | $x_0$                     | =   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND | ND | ND | ND | ND | x <sub>0</sub>        | $1 - x_0$          |      | $x_1$                     | =   | $x \times \alpha_{B-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND | ND | ND | ND | De | <i>x</i> <sub>1</sub> | $1 - x_1$          |      | $x_2$                     | =   | $x \times \alpha_{C-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND | ND | ND | De | ND | x2                    | 1 - x <sub>2</sub> |      | $x_3$                     | =   | $x \times \alpha_{B-A} \times \alpha_{C-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND | ND | ND | De | De | x3                    | $1 - x_3$          |      | $x_4$                     | =   | $x \times \alpha_{D-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND | ND | De | ND | ND | x4                    | $1 - x_4$          |      | $x_5$                     | =   | $x \times \alpha_{B-A} \times \alpha_{D-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND | ND | De | ND | De | x5                    | 1 - x <sub>5</sub> | With | $x_{\epsilon}$            | =   | $x \times \alpha_{G-4} \times \alpha_{D-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ND | ND | De | De | ND | x <sub>6</sub>        | $1 - x_6$          |      | $\mathbf{r}_{\mathbf{r}}$ | _   | $\mathbf{x} \times \boldsymbol{\alpha}_{-1} \times \boldsymbol{\alpha}_{-1} \times \boldsymbol{\alpha}_{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND | ND | De | De | De | x7                    | $1 - x_{\gamma}$   |      | ~ /                       |     | $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $ |
|    |    |    |    |    |                       |                    |      |                           |     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| De | ND | ND | ND | ND | x <sub>p</sub>        | $1 - x_{p}$        |      | $x_p$                     | =   | $x 	imes lpha_{n-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| De | ND | ND | ND | De | x <sub>p+1</sub>      | $1 - x_{p+1}$      |      | $x_{p+1}$                 | 1 = | $x \times \alpha_{B-A} \times \alpha_{n-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |    |    |    |    |                       |                    |      |                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| De | De | De | De | De | x <sub>2*-1</sub>     | $1 - x_{2^m - 1}$  |      | x <sub>2</sub> *          | -1= | $x 	imes lpha_{B-A} 	imes lpha_{C-A} 	imes 	imes lpha_{n-A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

$$f(\alpha_{B-A},...,\alpha_{n-A}) = \prod_{i=B}^{n} \alpha_{i-A}$$

Hanc Percent

eDF

**INERIS** 

Nancy-Université

UMR 7039

CRAN

A. Léger

PSAM9, Hong Kong, May 18th-23th 2008

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling **Part 3 : Application (1/5)** Conclusions & Perspectives

### **Studied system**

#### Object of study **Replacement action** of a level sensor Subsystem Safety barrier 'avoid a tank overfilling' Made up of a level sensor, an automatic alarm and a manual valve Kind of process Chemical process of a classified installation **Characteristics** Number of employees less than **100** people Production capacity 200 millions pounds per year Certifications ISO 9001, ISO 14001, OHSAS 18001 **Current situation** Recent restructurings Internal and external competition The subcontracting (workforce cutting, increase of the workload) Conclusions Weaken the system, could eventually lead to risky situations Two POF identified by organizational experts: - Shortcomings in the organization culture of safety (SOCS) - Production pressures (PP)



**INERIS** 

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling Part 3 : Application (2/5)

PSAM9, Hong Kong, May 18th-23th 2008

**Conclusions & Perspectives** 

### **Partial bayesian network model**



Basic Processed

CRAN

**UMR 7039** 

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling **Part 3 : Application (3/5)** Conclusions & Perspectives PSAM9, Hong Kong, May 18th-23th 2008

## **Model quantification**

#### **Quantification of the initial situation**

Human and organizational variables Technical variables `Non degraded state' = 99.99%
`LS intrinsic availability' = 99%

#### **Quantification of conditional probability tables**

#### Specific scale

**`No Impact**' (NI), **`Little Impact**' (LI), **`Impact**' (I), **`Important Impact**' (II), **`Total Impact**' (TI)

|                     |      | Path | ogenic O | rganizatio | onal Facto |    | Human | action sta    | ages |    |    |
|---------------------|------|------|----------|------------|------------|----|-------|---------------|------|----|----|
| Indicators          | SOCS | FDSM | WCB      | PHOC       | DIFE       | PP | NRDH  | Indicators    | Р    | E  | С  |
| De                  |      |      |          | I          |            | Π  |       | De            | II   |    |    |
| Ai                  | LI   |      | Ι        |            | Π          | Ι  | II    | Ai            | I    |    |    |
| Tr                  |      | LI   | Ι        | I          | Ι          | Ι  |       | Tr            | I    |    |    |
| Ex                  |      | II   |          |            |            | п  |       | Ex            |      | II |    |
| Rws                 | LI   | II   | NI       | II         |            | Ι  |       | Rws           |      | Ι  |    |
| Cf                  |      |      |          | LI         | LI         | Π  | I     | Cf            |      | II |    |
| Cmgd                | Ι    | II   |          | II         | Ι          | Π  |       | Cmgd          |      | TI |    |
| Rtc                 |      |      | II       |            | Ι          | Π  | I     | Rtc           |      |    | Ι  |
| Fe                  | II   | II   |          | II         | TI         | II |       | Fe            |      |    | II |
| Human action stages |      |      |          |            |            |    |       | Human action  |      |    |    |
| Preparation (P)     | Ι    | II   | LI       | I          | Ι          | Π  | I     | effectiveness | II   | TI | Ι  |
| Execution (E)       | Ι    | Π    |          | II         | LI         | Π  |       |               | •    |    |    |
| Closing (C)         |      | Ι    | Ι        | I          | П          | Π  | LI    |               |      |    |    |





57

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling **Part 3 : Application (4/5)** Conclusions & Perspectives

## **Results analysis – Simulation cases**

#### **Configuration 1** *A priori* results

| LS replacement effectiveness | 99.90% |  |  |
|------------------------------|--------|--|--|
| LS operational availability  | 99.20% |  |  |



In coherence with data used to build the model

#### **Configuration 2** Presence of pathogenic organizational factors

| SOCS    | PP      | LS replacement effectiveness | LS operational availability |
|---------|---------|------------------------------|-----------------------------|
| Present | Absent  | 45.79%                       | 72.28%                      |
| Absent  | Present | 7.84%                        | 53.40%                      |
| Present | Present | 4.27%                        | 51.62%                      |

Production pressures have to be handled in priority.

Human action effectiveness is more impacted than the technical component availability.





PSAM9, Hong Kong, May 18th-23th 2008

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling **Part 3 : Application (5/5)** 

#### Conclusions & Perspectives

## **Results analysis – Diagnosis case**

#### 66.57% Execution 1 32.55% Action stage 2 Preparation 3 Closing 26.37% 1 Cmqd 30.12% 2 23.21% Fe 3 Ex 14.54% 4 Rws 14.24% Action 5 Cf 12.22% indicator 6 De 9.47% 7 9.14% Ai 8 8.51% Rtc 9 Tr 8.34% PP 9.38% 1 2 FDSM 9.00% 3 PHOC 8.54% Pathogenic 5.52% organizational 4 SOCS factor 5 DIFF 5.52% 6 NRDH 3.00% 7 **WCB** 1.67%

#### **Configuration 3** LS replacement action: 'ineffective'



**Confirm** the previous conclusion (concerning Production pressures)

Identify the set of **most probable** causes of this ineffectiveness Direct causes can be explained by other causes (indirect ones).

**Collective treatment** (not only parts of them) In the considered example, in priority both: Execution, Cmgd and Production pressures





57

Part 1 : System characteristics Part 2 : Human and organizational dimensions modeling Part 3 : Application **Conclusions & Perspectives** 

### **Conclusions and Perspectives**

# Handling of human and organizational aspects for a probabilistic risk analysis of socio-technical systems by:

- 1. defining representative generic variables for each dimension,
- 2. leading to a generic qualitative configuration,
- 3. quantified through 'aggravation factors',
- 4. modeled with bayesian networks.

Necessary consideration of the whole causes for the treatment of a system weakness

Reduce the **complexity** by using OOBN

Quantification classes for influences in actions layer



Quantification classes for influences between organizational and actions layers

Human and organizational bow-tie initiators or events

Consider measure and model uncertainties





**INERIS**