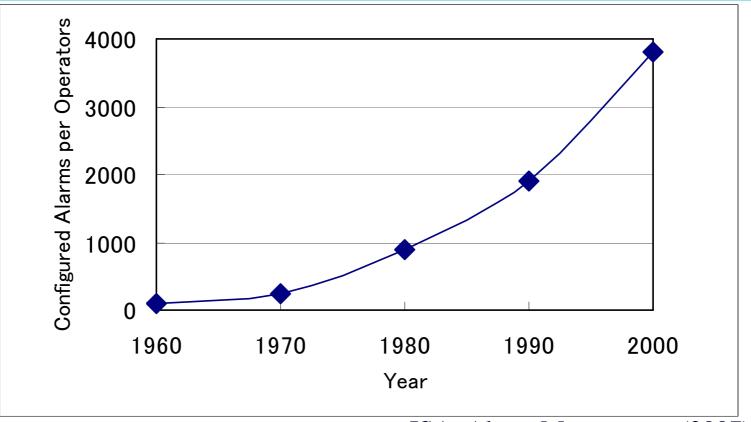


Rationalized Alarm Logic Design based on PHA

Yu Shazawa, Tokyo Institute of TechnologyYukiyasu Shimada, National Institute ofOccupational safety and HealthTetsuo Fuchino, Tokyo Institute of Technology

IPL: Independent Protection Layers

(AIChE CCPS (1992))

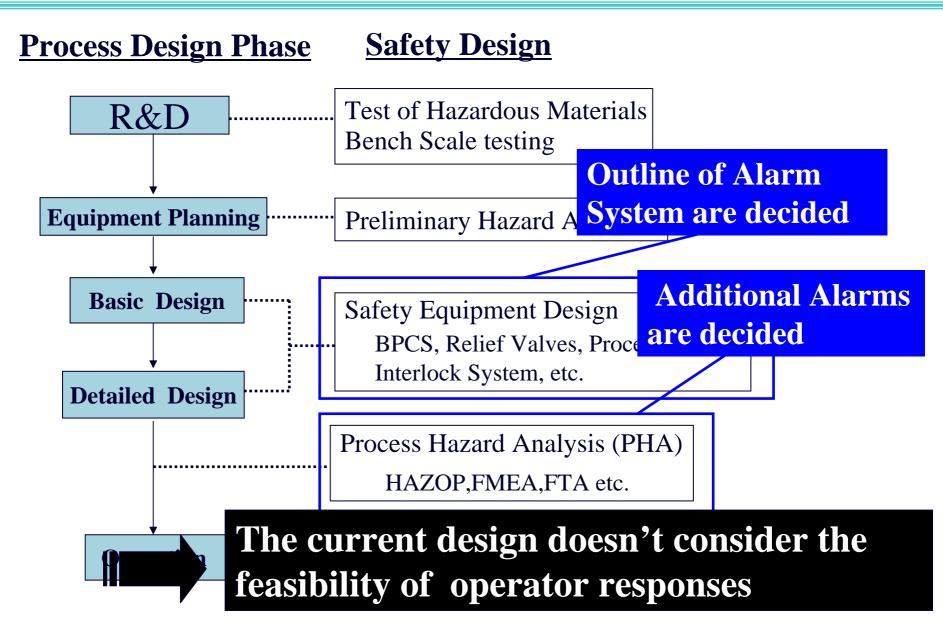

Function of Alarm System

- A process alarm is a mechanism for informing a operator of an abnormal process condition for which <u>an operator action is required.</u>
- The operator is alerted in order to prevent or mitigate process upset and disturbances.

ISA, Alarm Management(2007)

Needless Alarms for operator's action must not be configured.

Number of alarms has been increasing drastically



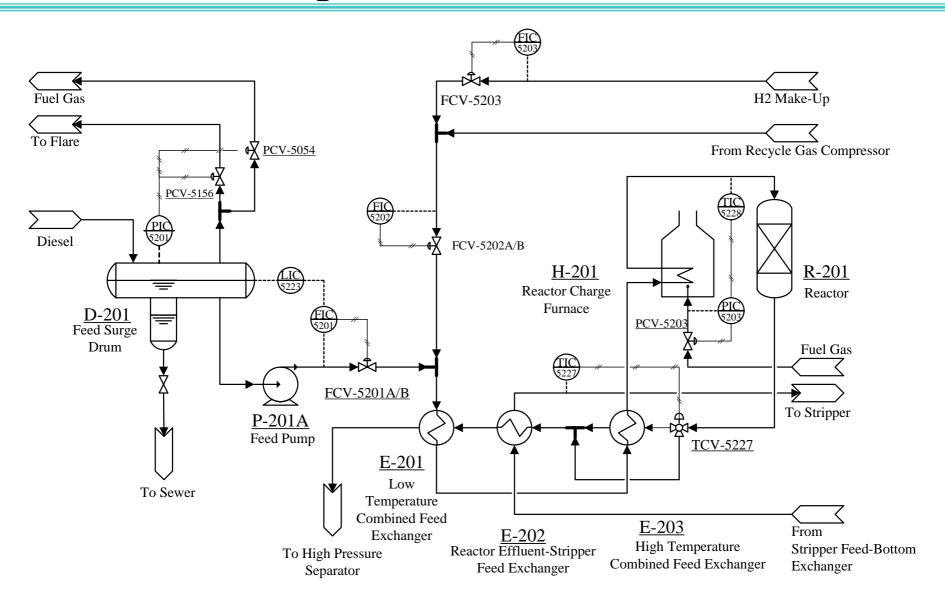
ISA, Alarm Management(2007)

Too many alarms for operators to take correct action.

How are Alarms designed ?

How does the procedure have to be improved?

To design Alarms which can complete responses

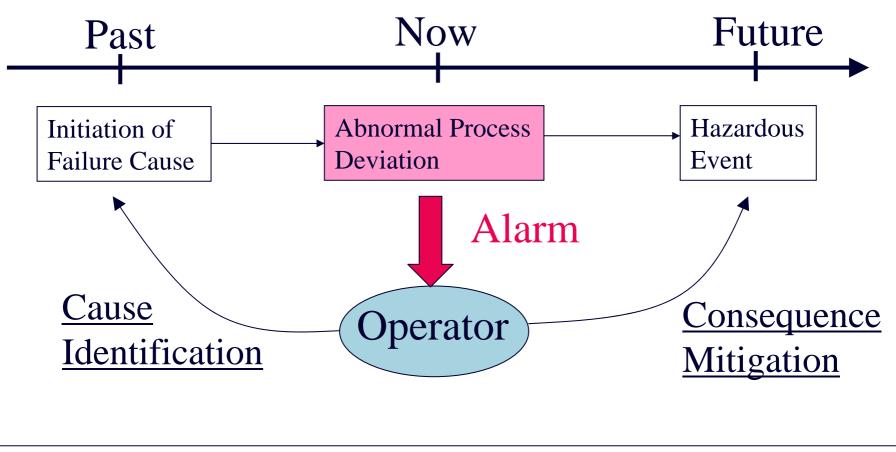

- 1. operator responses have to be clearly defined before alarm logics are determined.
- 2. The feasibility of operator responses depends on
 if there is enough time to respond.
 if operators can judge correct actions.

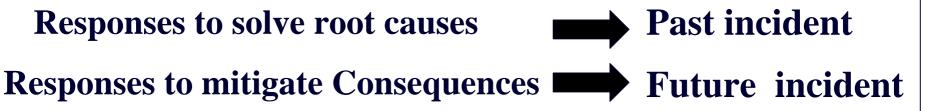
Alarm system design must be consistent with PHA.

We developed the design method based on HAZOP.

東京工業大学
Tokyo Institute of Technology

PFD of HDS process around Reactor

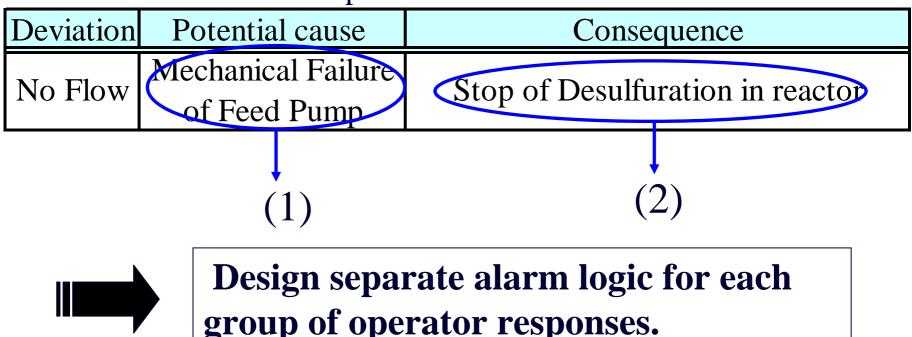

A part of HAZOP


Deviation	Potential Causes	No	Consequences	No	Mitigation
			Level of Feed Surge Drum(D-201) rises and		Back-up
			overflows. If inflow from upstream continues, There	1	Pump
			can be inflow to flare line. Process malfunction		(P201A)
			Reverse flow to D-201 through Pump mini flow line.	$\mathbf{B} = \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix}$	Back-up
			Hydrogen can also reverse to D-201.	Ζ	Pump
No Flow	Mechanical failure of Feed Pump	1	Furnace tube is overheated because Feed oil to Reactor Charge furnace(H-201) is lost and there is only hydrogen flow inside. If this continues long time, tube ruptures and fire break out inside H-201	3	a.P201A b.BPCS (TIC-5228)
	(P-201S)		Desulfuration in Reactor(R-201) is stopped because of lack of Feed Oil	4	P201A
			Insufficient heat exchange in Reactant Effluent Feed		a.P201A
		Exchange(E-202) causes malfunction in Stripper	Exchange(E-202) causes malfunction in Stripper	5	b.BPCS
			(outside of this node)		(TIC-5227)
			Level of High Pressure Separator lowers and process malfunction occurs	6	P-201A

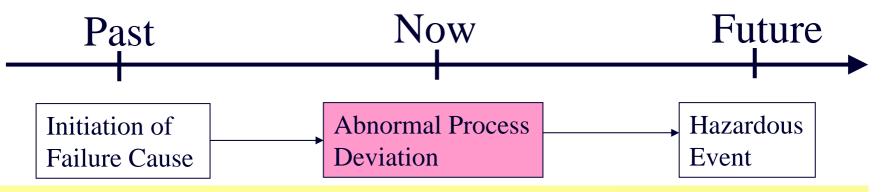
17 potential causes are analyzed in HAZOP.

東京工業大学 Tokyo Institute of Technology


Responses can be separated into two groups



Responses can be separated into two groups


- (1) Responses to solve root causes
- (2) Responses to mitigate consequences

MI 本パーネバー Tokyo Institute of Technology

Why is it better to separate?

•Alarm Logics for consequence mitigation

One-to-One relationship between Response and Alarm Logic is possible.

•Alarm Logics for cause identification

One-to-One relationship between Response and Alarm Logic may be impossible.

Procedure of Alarm Logic Design based on HAZOP

a. Design of Alarm Logics for consequence mitigation

- 1. Produce Alarm Logic Design Base (ALDB) Sheet.
- 2. Prepare Alarm Priority Grid (APG).
- 3. Output the list of Alarm Logics for consequence mitigation.

b. Design of Alarm Logics for cause identification

- 1. Decide a tentative pair of Alarm Logics for cause identification.
- 2. Analyze the possibility of alarm activation by Event Tree Analysis (ETA)-based method.
- 3. Check whether the tentative pair is acceptable with Alarm Matrix

Preparation for Alarm Logic Design Base Sheet

HAZOP isn't applicable form to design Alarm Logic.

Transform HAZOP into ALDB Sheet.

Rearrange HAZOP so that propagation of process deviation can be understood.

•"Possible Impact "

• "Intermediate Deviation."

Add necessary information to HAZOP to prioritize each Alarm.

•Maximum Available response time.

•Severity of Possible Impact.

▲ 東京工業大学 Tokyo Institute of Technology

Classification of MART and Severity

MART (Maximum Available Response Time)

Rank	Definition
Insufficient	Insufficient time to respond
Immediate	There is time to respond, but immediate actions are necessary
Short	There is time to respond, but not enough
Long	There is enough time to respond

Severity

Rank	Definition
None	No loss
Minor	Plant operation is possible if impact occurs
Major	Plant operation is impossible if impact occurs
Severe	(More severe result is assigned to 'Severe')

Example of ALDB sheet

HAZOP

Deviation	Potencial cause	Consequence
	Mehchanical	Furnace tube is overheated because of
No Flow	Failure of Feed	Feed loss. If this continue long time,
	Pump	tube rupture and fire will happens.

Alarm Logic Design Base Sheet

Potential cause	First Deviation	Intermediate Deviation	Possible Impact	MART	Severity
Mechanical Failure of Feed Pump	No Flow	High temperature at furnace tube	tube rupture and fire	Short	Severe

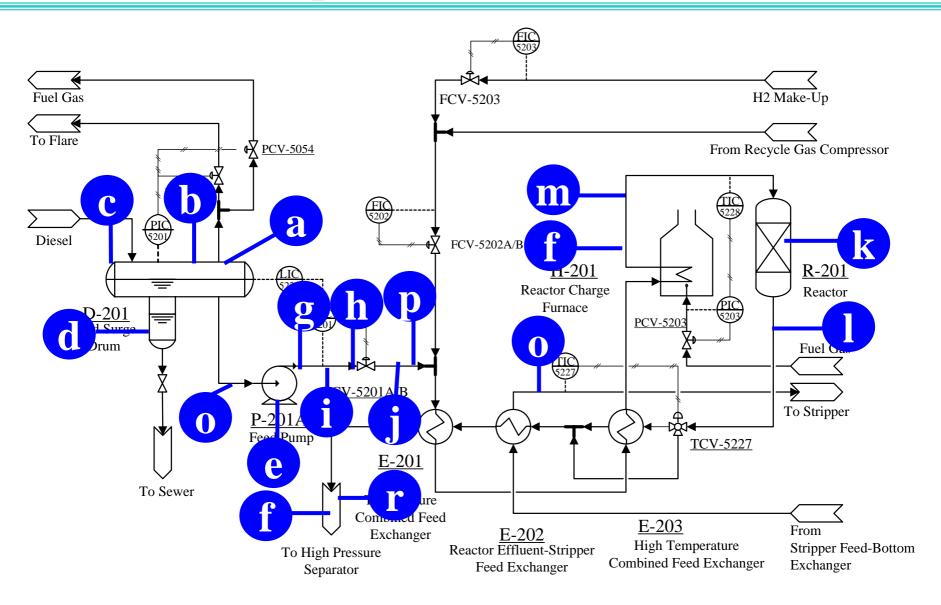
(APG) Alarm Priority Grid

APG can determine whether alarm is needed, and evaluate priority ranks of each alarm logic.

$$(Priority) = (Severity) \times (MART)$$

Alarm Priority Grid

			S	everity	
		None	Minor	Major	Severe
Response Time	Long	No Alarm	Low	Low	High
	Short		Low	High	High
	Immediate	NO Alam	High	Emergency	Emergency
	Insufficient		High	No Alarm, but S	SIS is necessary


東京工業大学 Tokyo Institute of Technology

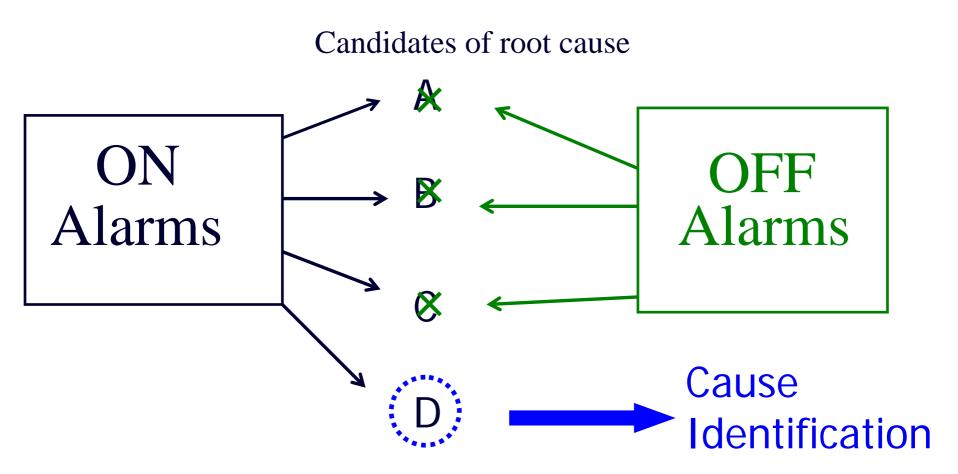
Production of AL list for Consequence mitigation

Code	Place	Parameter	Priority
a	D-201	Level High	Low
b	D-201	Level Low	High
С	D-201	Pressure High	Low
d	D-201 Boot	Level High	Low
e	Feed Pump Line	Pressure High	Low
f	Reactor Charge Furnace Tube	Temperature High	Emergency
g	10 Al		; h
h	18 Alarm Logics		;h
i		•	W
j			\mathcal{N}
k	for consequence	mitigation	N
1			N
m	Reactor Charge Furnace Tube	Temperature Low	Low
n	D-202	Level Low	Low
0	Feed Line to T-202 from E-202	Temperature Low	Low
р	Both Lines of FCV-5201A/B	More Flow	Low
q	Start-up Bypass	Flow Detection	Low
r	Exit of C-204	Temparature High	Low

東京工業大学
Tokyo Institute of Technology

PFD of HDS process around Reactor

Procedure of Alarm Logic Design based on HAZOP


a. Design of Alarm Logics for consequence mitigation

- 1. Produce Alarm Logic Design Base (ALDB) Sheet.
- 2. Prepare Alarm Priority Grid (APG).
- 3. Output the list of Alarm Logics for consequence mitigation.

b. Design of Alarm Logics for cause identification

- 1. Decide a tentative pair of Alarm Logics for cause identification.
- 2. Analyze the possibility of alarm activation by Event Tree Analysis (ETA)-based method.
- 3. Check whether the tentative pair is acceptable with Alarm Matrix

The approach to identify root causes

Operators identify causes by combination of ON-Alarms and OFF-Alarms.

Design procedure of ALs for cause identification

Step1:

Decide a tentative pair of Alarm Logics to detect occurrence of each cause.

Step2:

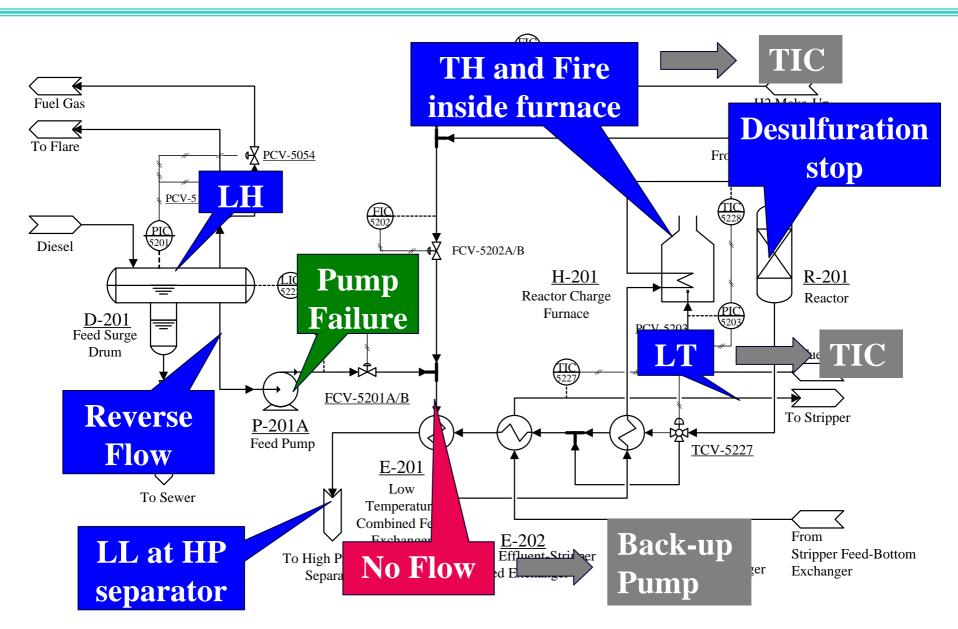
Analyze which alarm has possibility of activation under each abnormal situation.

Step3:

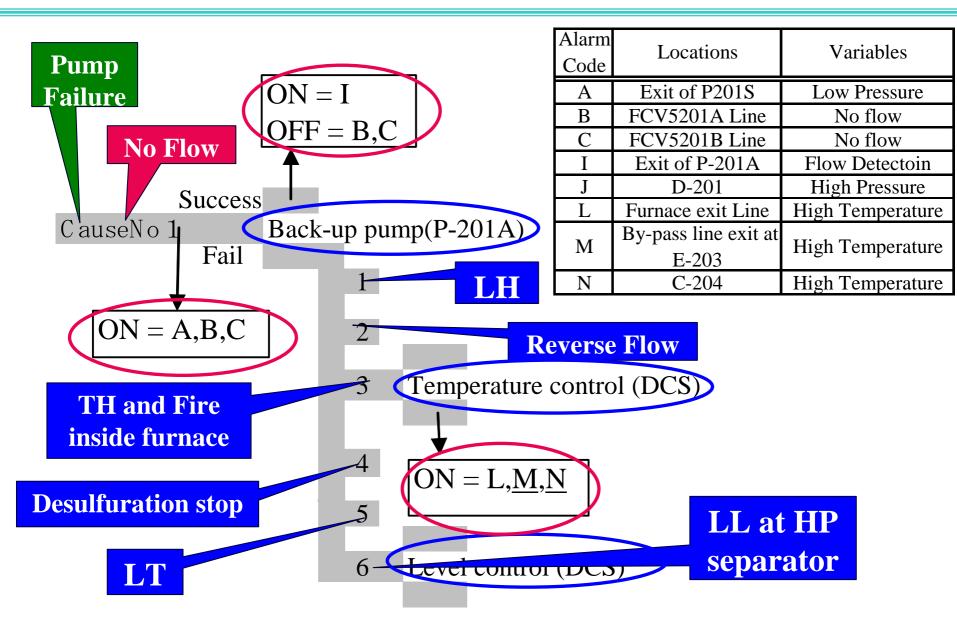
Check whether it is possible to uniquely identify each root cause. If impossible, go back to Step1.

Step1:Decide a tentative pair of Alarm Logics

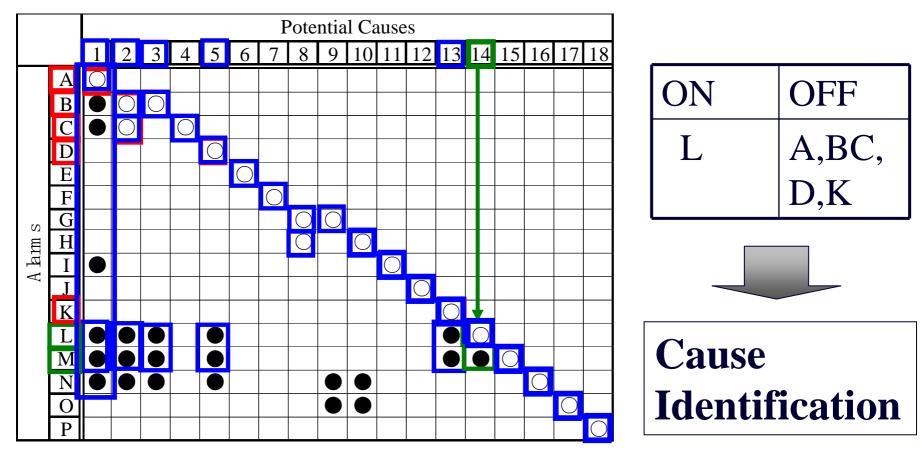
Assume the occurrence of each potential cause one-by-one ,and decide Alarm Logic individually .


Repeat the change of this pair until uniquely identification become possible at Step3 .

Example


東京工業大学 Tokyo Institute of Technology

Step2:Event Tree Analysis for Alarm Logic Design


▶ 東京工業大学 Tokyo Institute of Technology

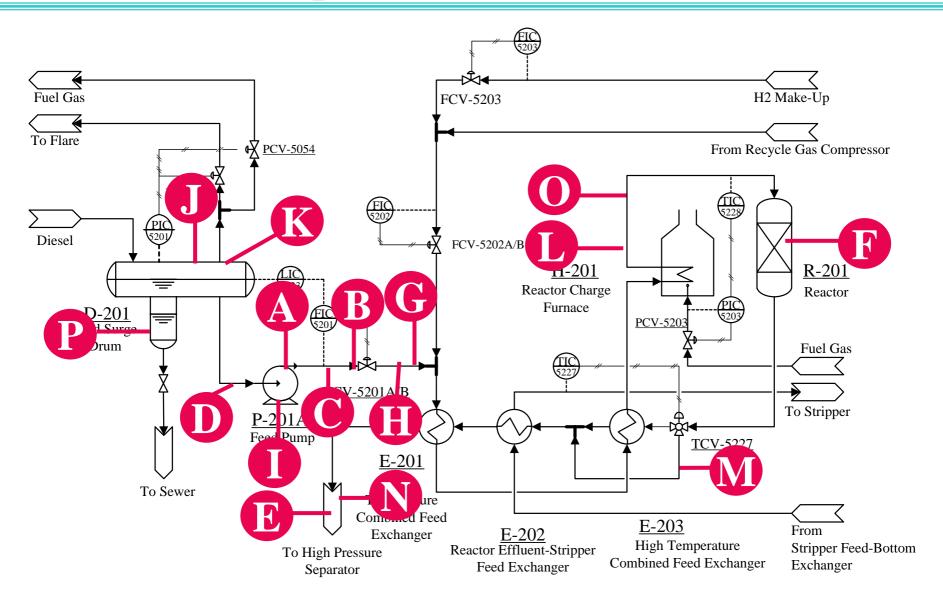
Step2:Event Tree Analysis for Alarm Logic Design

Step3:Alarm Matrix

- Alarms which appear ahead of first branch and are never canceled on ETA
- = the other alarms except the above alarms

Alarm Logic List for Cause Identification

Alarm Logic List


Alarm Code	Locations	Variables		
Α	Exit of P201S	Low Pressure		
В	FCV5201A Line	No flow		
С	FCV5201B Line	No flow		
D	Start-up bypass	Flow Detectoin		
Е	C-204	Stop of Water		
E	C-204	injection		
F	$\mathbf{P}_{\text{opstor}}(\mathbf{P},2)$	Pressure difference		
Г	Reactor(R-201)	High		
G	FCV-5201A Line	More flow		
Н	FCV-5201B Line	More flow		
Ι	Exit of P-201A	Flow Detectoin		
J	D-201	High Pressure		
K	D-201	Low Pressure		
L	Furnace exit Line	High Temperature		
М	By-pass line exit at	Il'al Tama anatura		
IVI	E-203	High Temperature		
Ν	C-204	High Temperature		
0	Furnace exit Line	Low Temperature		
Р	Boot interface at D201	Level High		

Evidence of Cause Identification

Cauca		
Cause	ON-Alarm	OFF-Alarm
No.	01111111	
1	А	
2	B,C	А
3	В	A,C
4	С	A,B
5	D	
6	Е	
7	F	
8	G,H	
9	G	
10	Н	
11	Ι	А
12	J	
13	K	
14	L	A,B,C,D,K
15	М	A,B,C,D,K,L
16	Ν	A,B,C,D,G,H
17	0	G,H
18	Р	

東京工業大学
Tokyo Institute of Technology

PFD of HDS process around Reactor

Conclusion

- We proposed a new method of Alarm Logic
 Design based on HAZOP.
- We separately design two groups of Alarm Logics; One is for cause identification, the other is for consequence mitigation.
- We illustrated this method through the case
 study of HAZOP result for HDS process around
 Reactor.

Appendix

Rearrangement of HAZOP information

Pick out "Possible Impact" and "Intermediate Deviation" from each "Consequences" in HAZOP.

Possible Impact

The concrete process state which may lead to some loss.

Intermediate Deviation

Process variable deviation between first deviation and Possible Impact. This can be expressed with the same term as first deviation.

Rearrangement of HAZOP information

HAZOP

Deviation	Potencial cause	Consequence
	Mehchanical	Furnace tube is overheated because of
No Flow	Failure of Feed	Feed loss. If this continue long time,
	Pump	tube rupture and fire will happens.

Alarm Logic Design Base Sheet

Potential cause	First Deviation	Intermediate Deviation	Possible	Impact	MART	Severity
Mechanical Failure of Feed Pump	No Flow (High temperature a furnace tube	tube ru and f	-		

Classification of MART

Evaluate MART (Maximum Available Response Time) and Severity to each possible Impact.

MART (Maximum Available Response Time)

the time within which operators can take actions to prevent Possible Impact from happening if there are no other safety equipments.

Severity

How severe Possible Impact is if it become realize.

Classification of MART and Severity

HAZOP

Deviation	Potencial cause	Consequence
	Mehchanical	Furnace tube is overheated because of
No Flow	Failure of Feed	Feed loss. If this continue long time,
	Pump	tube rupture and fire will happens.

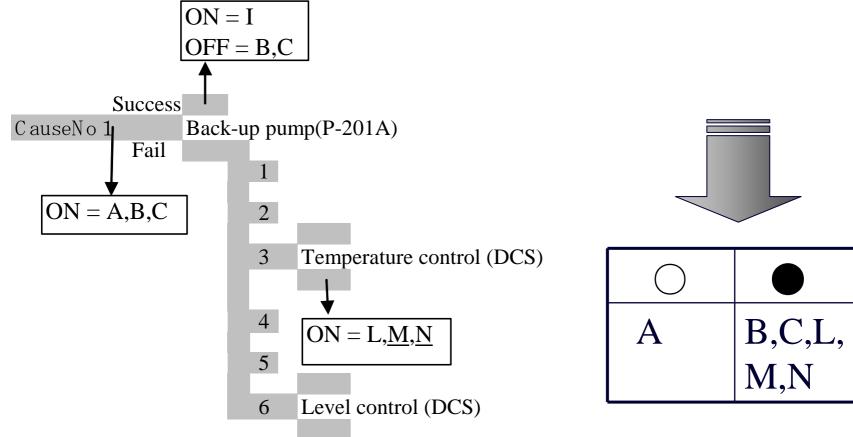
Alarm Logic Design Base Sheet

Potential cause	First Deviation	Intermediate Deviation Possible Impact		MART	Severity
Mechanical Failure of Feed Pump	No Flow	High temperature at furnace tube	tube rupture and fire	Short	Severe

(APG) Alarm Priority Grid

APG can evaluate whether alarm is needed, and priority ranks to each alarm.

$$(Priority) = (Severity) \times (MART)$$


		Severity					
		None	Minor	Major	Severe		
Response Time	Long	No Alarm	Low	Low	High		
	Short		Low	High	High		
	Immediate	NO AIAIIII	High	Emergency	Emergency		
	Insufficient		High	No Alarm, but SIS is necessa			

Safety Interlock System with adequate Safety Integrity Level(SIL) must be implemented

Step3:Alarm Matrix

the other alarms except ON-Alarms

