

Handling risk in the electric power sector

Wolfgang Kröger, ETH Zürich, Switzerland

PSAM9, Hong Kong, 21 May 2008

Strategy of defence-in-depth

Fifth level: Off-site emergency response

Supplementing probabilistic approaches

Although these concepts have been applied successfully, probabilistic methods (PRA) have been applied to provide an additional view, additional insights. In particular, PRA

- achieves a realistic description of risk and safety and proves safety margins;
- models performance of various safety measures and discloses weak points;
- reflects the consequences of dependencies and of men-machineinterdependencies;
- uncertainties become visible (they are not generated);
- identifies the relative importance (dominance) of specific accident sequences and allows the optimal use of available resources;
- allows the assessment of operational / maintenance related aspects and considers operational experience.

Quantitative attributes characterizing the risk are defined and calculated, the most commonly used are the core damage frequency (CDF) and the large early release frequency (LERF).

Safety concept according to Swiss HSK-R-100

Safety level	Cate- gory	Frequency H per year	Verification	Goal	Dose limit environment
Normal operation				Prevention of incidents and accidents, minimisation of radiation to workers	
Incidents		H>10E-01	Covered by deterministic accident analysis		Q-DRW ¹⁾
Design base accidents	1	10E-02< H<10E-01	Deterministic	Prevention of damage to: - safety relevant components - fuel clading	Q-DRW
	2	10E-04< H<10E-02	accident analysis, safety systems are available as	Limitation of damage to: - safety relevant components - fuel clading	1 mSv
	3	10E-02< H<10E-04	required	Assuring the - coolability of the reactor core - integrity of the containment	100 mSv
Beyond design base accidents		H<10E-06	PRA	Limitation of the consequences by including the radioactivity or the controlled release of radioactivity into the environment (internal accident management)	-
			Emergency preparedness	Mitigation of radiological consequences in the environment (external accident management	-

¹⁾ specified guiding figures

Operational record of NPPs

- About 13'000 reactor-years accumulated
- Two severe accidents (TMI PWR 79, INES 5; Chernobyl RBMK, INES 7)
- Number of unplanned scrams narrowed down to one every two years (Western reactors)

Trans-boundary physical energy flows (GWh) in Europe

PSAM9, Hong Kong 2008

6

The N-1 security criterion specifies that...

"....any probable single event leading to a loss of power system elements should not endanger the security of the interconnected operation, that is, trigger a cascade of trippings or the loss of a significant amount of consumption".

Electric power supply systems: recent major blackouts

Blackout		Load loss [GW]	Duration [h]	People affected	Main causes
Aug. 14, 2003	Great Lakes, NYC	~ 60	~ 16	50 Mio	Inadequate right-of-way maintenance, EMS failure, poor coordination among neighbouring TSOs
Aug. 28, 2003	London	0,72	1	500´000	Incorrect line protection device setting
Sept. 23, 2003	Denmark / Sweden	6,4	~ 7	4,2 Mio.	Two independent component failures (not covered by N-1 rule)
Sept. 28, 2003	Italy	~ 30	up to 18	56 Mio.	High load flow CH-I, line flashovers, poor coordination among neighbouring TSOs
July 12, 2004	Athens	~ 9	~ 3	5 Mio.	Voltage collapse
May 25, 2005	Moscow	2,5	~ 4	4 Mio	Transformer fire, high demand leading to overload conditions
June 22, 2005	Switzerland (railway supply)	0.2	~ 3	200´000 passengers	Non-fulfilment of the N-1 rule, wrong documentation of line protection settings, inadequate alarm processing
Aug. 14, 2006	Tokyo	?	~ 5	0.8 Mio households	Damage of a main line due to construction work
Nov. 4, 2006	Western Europe ("controlled" line cut off)	~ 14	~ 2	15 Mio. households	High load flow D-NL, violation of the N-1 rule, poor inter TSO- coordination

Conclusions

- The electric power supply system is a complex critical infrastructure comprising various interacting elements and multifaceted risk, operating in a fragmented environment.
- Historically deterministic demonstration of NPP safety and grid stability; transition to more comprehensive – probabilistic concepts as supplement.
- Call for numerical targets and risk-informed decision making as well as necessity of significant improvements.