

Probabilistic safety assessment of dam's gated spillway systems

Nonclercq Philippe, Chraibi Hassane, Zeller Maxime

1 PSAM 9 Hong Kong, China 18-23 may 2008

EDF R&D/Industrial Risk Management Department

- What is a gated spillway system ?
 - Function, Description, Complexity of system
- Motivations
- Method foundations
 - Expression of the feared event
 - Collecting trustworthy reliability data
 - Generic modelling
 - Quantification
- Future works in sight

What is a gated spillway system ? ¹

• Function

Dam gated spillway is a subsystem within dams.

- It aims to :
 - release surplus or flood water which exceeds the allotted storage space in storage and detention dams
 - divert water which has a flow rate that exceeds the design limit for diversion dams

Prevents overtopping that may lead to a breach of dam

What is a gated spillway system ? ²

• Description : <u>Components</u>

Gates

- Three main kinds of gates
 - 1. hinged flaps or shutters
 - 2. vertical-lift gates
 - 3. radial gates
- Actuated by :
 - The weight of water at a given upstream level
 - External sources of energy (electrical engine, hydraulic)

What is a gated spillway system ? ⁴

- Description : <u>Components</u>
 - Electrical supply
 - National grid
 - Diesel driven generator set

Several kinds of electrical wiring with different levels of reliability

What is a gated spillway system ? ⁵

• Description : <u>Components</u>

I &C subsystem

- Detects flood conditions
- Detects gate position
- Detects malfunction
- Signals alarm to operators
- Formulates opening/closing instructions
- Sends opening/closing orders to gate actuators

What is a gated spillway system ? 6

Description : <u>Behaviour</u> •

Motivations

Statistics

Overtopping has caused

49% of embankment dam failures43% of masonry dam failures9% of concrete dam failures

22 % of overtopping cases caused by underestimated spillway systems 17 % of overtopping cases caused by malfunction of spillway systems

- Possible need of increasing spillway discharging capacity due to a re-evaluation of flood extreme levels
 - ➔ Meet actual requirements for individual dams :

How to measure risk level?

→ Coordinate and prioritize investments according to actual risk level :

Standardize risk analysis method

Common references for every spillway risk analysis

Help and support method for approximately 200 analyses

EDF R&D/Industrial Risk Management Department

Method foundations ¹

• Expression of the feared event

$$P(z > C) = \sum_{F} P(z > C | Flood_{F}) * P(Flood_{F})$$

- z : upstream water level
- C : critical water level (before overtopping)
- Flood_F : A potential flood

z is a continuous variable which varies over time and governs the occurrence of the feared event

lethod foundations ²	
---------------------------------	--

• Collecting trustworthy reliability data for equipment

National failure record system But great equipment disparity in the EDF operated dams

- Highlighting common equipment characteristics
 New classification of equipment
- Collecting and processing recorded data according to the new classification

Usage of produced data as a starting point that has to be refined by experts and operators for each specific dam gated spillway system

Method foundations ³	
---------------------------------	--

- Collecting trustworthy reliability data for human factor
 - At the reception of warning time signal
 - If present in the dam
 - operator must acknowledge awareness of alarm signal
 - If absent
 - operator must acknowledge awareness of alarm signal and go to the dam

Operator may be requested for Test And Repair in warning Time Normal manual operating in flood Time Backup manual operating in flood Time Repair in flood Time

Method four	foundations	4	

Generic modelling

Set up a tool that aims, for every individual gated spillway system, to estimate the probability that the water in the upstream dam basin will reach critical level.

→ Usage Of KB3

Multi-domain software platform for system dependability evaluation

Method foundations ⁴

edf

INTERFACE		receivingUraer
Actuator	KIND_OF ACTUATOR	IF State = 'closed' AND NOT orderReceived
	CARDINAL 1 TO 2;	MAY_OCCUR FAULT ROO
CONSTANT		DIST INS (GammaFailureOnOpeningDemand)
MaxFlowrate	DOMAIN REAL	INDUCING
	DEFAULT 200;	orderReceived
GammaFailureOnOpeningDemand	DOMAIN REAL	OTHERWISE TRANSITION NON_ROO
	DEFAULT 0.001;	INDUCING
OpeningDuration	DOMAIN REAL	toOpen ← TRUE,
	DEFAULT 0.15;	orderReceived TRUE;
ATTRIBUTE		openingGate
State	DOMAIN 'opened' 'closed	IF orderReceived AND toOpen
	DEGFAULT 'closed';	MAY_OCCUR TRANSITION OPENING
CurrentFlowrate	DOMAIN REAL	DIST T_C (OpeningDuration)
	DEFAULT O;	INDUCING
toOpen	DOMAIN BOOLEAN	state 🗲 'opened'
	DEFAULT FALSE;	
orderReceived	DOMAIN BOOLEAN	
	DEFAULT FALSE;	
INTERACTION		
IF State = 'opened'		
THEN CurrentFlowRate 🗲 MaxFlo	owrate	

Method foundations ⁵

- Principles of modelling : <u>Equipment</u>
 - For every component
 - For some components
- : Two failure variants a non repairable variant a repairable variant

: One failure mode

Some components are testable in warning time

Some components must be operated manually

Some components may be operated manually in impaired situation

Some components are activated at a specified level

of upstream water

Gates have a discharging capacity that depend on the level of upstream water

Level of upstream water varies over time $Z_{t+\delta t} = Z_t + \alpha.(Q_{in} - Q_{out}). \delta t$

γ

- γ
 γ & mean time to repair
- → mean time to test
- → mean time to operate
- → mean time to operate
- → level
- \rightarrow level₁, level₂, ...

Method foundations ⁶

Method foundations ⁷

Quantification

$$P(S_n^F) = (\prod_{t_{ij} \in S_n^F} \gamma_{t_{ij}}) . (1 - e^{-\lambda_F T}).$$

$$P_{F}(FearedEvent) = (\sum P(S_{n}^{F})) = (1 - e^{-\lambda_{F}T}) \cdot \sum (\prod_{\substack{t_{ij} \in S_{n}^{F} \\ \downarrow}} \gamma_{t_{ij}})$$

$$P(Flood_{F}) \cdot P(z > C | Flood_{F})$$

$$P(FearedEvent) = \sum_{F} P_{F}(FearedEvent) = \sum_{F} P(z > C | Flood_{F}) * P(Flood_{F})$$

$$= P(z > C)$$

Method foundations ⁸	
---------------------------------	--

• Quantification output example

Frea(TO)		nb seq.	Cible nº	Expression booleenne :
	2.4245764e-007	1842	1	realise(EvenementRedoute)
	2.42437040-007	1042		

${f M}$ aj. erreur		Valeur critere tronc	Critere trone	Critere troncature		
2.2786876e-008	1788828	1e-012	probabilit	≥ min		
2.27868760 000	1788828					

Method foundations ⁸

•

19

edf

Quantification	Transitions			Frequences :		Cantal
Quantification	Nom	Date	Type	Unite T.	T. Observ.	Contrib.
	[DUREE 2 DE CRueDicennale,		INS			
output example	fonctionneme DE ServicePrevisionCrues		INS			
	[fonctionnement DE TelecomEntrant]		INS			
	[fonctionnement DE AlarmeBarrage.		INS			
	fonctionnement DE TelecomSortant		INS			
	[fonctionnement DE Dap.		INS			
	attente DE OP 1]		INS			
	[attente DE OP 2]		INS			
	[REUSSITE DEPLACEMENT DE OP 2]		INS			
	[DEPLACEMENT DE OP 21	2.0000e+00	TC			
	[ETABLISSEMENT CRUE DE CRueDicennale]	4.8000e+01	TC			
	[OKabs signal DE MesureNiveau.		INS			
	OKsig errone DE MesureNiveaul		INS			
	[OKdef soll DE eqs 1]		INS			
	[OKdef soll DE DJ 1]		INS			
	[OKdef soll DE Bascule 1]		INS			
	[OKdef soll DE Barre 1]		TNS			
	[OKdef soll DE Bascule 6]		TNS			
	[OKdef soll DE Redresseur]		TNS			
	[OKdef soll DE CCBarrage]		TNS			
	[OKdef soll DE CCLocal 1.		INS			
	def sollCourte DE CCLocal 2.		TNS			
	OKdef soll DE CCLocal 31		TNS			
	[OKdef soll DE Bascule 2.		INS			
	OKdef soll DE Bascule 41		TNS			
	[OKnerte alim DE Coffret 1.		TNS			
	OKnerte alim DE Coffret 31		INS			
	[OKnerte alim DE MELECTRIOUE 1.		INS			
	OKnerte alim DE MELECTRIQUE 31		INS			
	[OKn c h DE Chaine 1.		INS			
	$OKp \ c \ m \ DF \ Chaine \ 1$		TNS			
	OKp c h DF Chaine 3		TNS			
	OKp c m DF Chaine 31		TNS			
	[OKn c m DE VSTONEV 1.		INS			
	OKn c m DE VSTONEY 31		TNS			
	[enclenchementRenarations DE moniteur]	4.8001e+01	TC			
	[ENGLEMENTER PARATION DE OP 1]	1.00010/01	TNS			
	def sollReparation DE CCLocal 21	4 8101e+01	TC			
	[atteinteNivEN DF moniteur]	4 8154e+01	тс			
	[atteinteNivRN DE moniteur]	4.8221e+01	TC			
	[atteinteNivPHF DF moniteur	4 9692e+01	TC			
	atteinteNiveauèNe DE EvenementDedoute	4 96926701	TC			
	[atteinteNivSurete DF moniteur]	5 0000e+01	TC			
	[atteinteNivDHF DF moniteur	5.0572e+01	TC			
	atteinteNiveeulNe DE EvenementDedeutel	5.05720101	TC			
PSAM 9 Hong Kong, China 18-23 may 200	[atteinteNivENE DE moniteur	5.0572CT01 5.0592a±01	TC			
	atteinteNiveeulNe DE EvenementPodeutel	5.05926401	TC	2 01500-11	8 06010-00	3 32430-02
	accounteriveauvie pr rvenementkedOutel	0.00946701	1 10 1	_ 2.0100E-11	1 9.000IG-03	U2.2243E-02

Future works in sight

- Finalising method for data estimation of human action efficiency
- Taking external and physical Common Cause Failure into account
- Making pilot risk analysis
- Improving the clarity of the quantification results
- Transferring tools to engineering departments

