Level I & Level 2 Internal Events PSA Accident Sequence Quantification

S. Sawh, M. Wei, L. Comanescu, G. Banaseanu A. Petrescu, A. Nainer, M. Masroor, R. K. Jaitly AECL

> A. Jean, D. Basque, D. Mullin NB Power

> > May 22, 2008

Point Lepreau Generating Station

- Commercial operation in 1983
- Proven to be an economic and environmentally sound source of electricity generation provides 1/3 of power consumed in New Brunswick
- Station continues to perform well, but key reactor components are nearing the point in time in which they will need to be replaced.
- Refurbishment Plan: Currently in an 18-month outage
 - Life extension by 25 to 30 years

PLGS PSA

- Partnership between Atomic Energy of Canada Limited and New Brunswick Power
 - NB Power provided most reliability models and access to site data.
 - Team effort
 - Level 1 ASQ through to Level 2 ASQ.
 - Currently final Summary Report
 - Both attend meetings with regulator

Level 1 and 2 PSA Goals and Limits

- Severe Core Damage Frequency (SCDF) from Internal and External Events:
 - Limit: 1E-04 events/year
 - Goal: 1E-05 events/year
- Large Release Frequency (LRF) from Internal and External Events:
 - Limit: 1E-05 events/year
 - Goal: 1E-06 events/year
- Seismic Margin corresponding to a High Confidence Low Probability of Failure (HCLPF)
 - 0.3g for Severe Core Damage
 - 0.4g for Large Releases

Level 1 Internal Events

- Accident Sequence Quantification (ASQ) performed to evaluate the SCDF
 - Initiating Events (IE) selected
 - Fault Trees (FT) created for mitigating systems and support systems
 - Detailed Event Trees (ET) created
 - Quantify sequences
 - Apply Recoveries

Level 1 Initiating Events

Frequency was derived based on:

- Statistical calculation based on site specific data and CANDU operating experience data
- Pipe failure rate calculations
- Fault tree analysis

82 Initiating Events were created.

Level 1 Fault Trees

Data

- Site specific data
- External generic data combined with site data using Bayesian combination
- Common Cause Failure (CCF) analysis using the Unified Partial Method
- Human Reliability Analysis (HRA) using ASEP

Master Fault Tree

- Over 600 tops
- Database of over 30 000 basic events

Level 1 Event Trees

67 were selected for ASQ as they directly challenged core integrity

Termination of Level 1 accident sequences are classified as plant damage states (PDS) Eleven different PDS

- Severe core damage
- Widespread fuel damage
- Limited fuel damage with economic consequences
- No fuel damage but economic consequences

Recovery

Obtain final results that provides a realistic estimate of SCDF

- Dependency between operator actions accounted for using SPAR-H
- Cutsets reviewed for conservatism
 - Recovery applied at cutset level to dominant contributors
 - Iterative process
- Examples:
 - Dominant CCF events recalculated using alpha CCF methodology
 - Dominant human actions recalculated using THERP

Computer Codes

CAFTA 5.3

– Primary Interface for FT, ET and Cutsets

PRAQuant 4.0a

- Interface for sequence quantification

FORTE and FTREX

- Quantifiers

QRecover

- Application of Recovery Actions

Level 1 Results

SCDF Full Power Operation = 1.66E-05 events/yr

Level 1 Results SCDF Shutdown State = 9.28E-06 events/yr

Level 2 - Internal Events

- Dominant SCD sequences from Level 1 Internal Events progress to Level 2 analysis
- Sequences are grouped into 5 representative SCD accidents for severe accident progression:
 - Full Power Sequences
 - In-core LOCA
 - Small LOCA
 - Station Blackout
 - Containment Bypass
 - Shutdown State
 - Containment Pressure Capacity Determined

Severe Accident Progression

- MAAP4-CANDU Version 4.0.5A+ analyses performed to estimate:
 - Challenges to containment
 - Accident timing and progression
 - Hydrogen and Carbon Monoxide concentrations
 - Fission products transport and releases
 - Effectiveness of the operator in mitigating severe accident consequences

- Results of MAAP analyses are the basis for containment event trees (CETs)
- To delay or stop core damage progression, the main functions of the CETs are:
 - Isolate containment
 - Control containment pressure
 - Control hydrogen/carbon monoxide
- Termination of Level 2 accident sequences are classified as one of the external plant release categories (EPRC)

Level 2 Inputs

187 Level 1 sequences chosen for analysis in Level 2

- Represent top 99.8% SCDF Sequences
- Containment Bypass events
- Level 2 is directly Linked with Level 1

Grouped for Level 2

- Similar Plant Configuration
- Status of Mitigating Systems
- Impact on Containment System availability
- Containment status

Calandria Vault Makeup and Emergency Venting System

- The new seismically robust system will provide make-up to the calandria vault before calandria vault failure
- Last resort to prevent calandria vessel failure and prevent Molten Core Concrete Interaction and therefore reduce H₂ production during severe accidents
- Used in conjunction with filtered emergency venting system which controls the containment pressure by discharging steam and preventing the airlock penetration failure

Level 2 Results

LRF Full Power Operation = 1.00E-07 events/year

Level 2 Results

LRF Shutdown State = 2.64E-07 events/year

Internal Events Results Summary

Severe Core Damage Frequency

Full Power Operation = 1.66E-05 events/year Shutdown State = 9.28E-06 events/year

Large Release Frequency

Full Power Operation = 1.00E-07 events/year Shutdown State = 2.64E-07 events/year

