

An inexistent series of railway crashes

by Gilles Dupin RATP, engineer, risk assesment

PSAM9, may 2008

A derailment in Paris....

Black summer of 2006

On 3 July 2006, in Valencia (Spain)

On 21 August, in Villada (Spain)

On 22 September, in Lathen (Germany)

On 11 October, in Zoufftgen (France)

On 17 October, in Roma (Italy)

a metro trainset derails killing 41 people

an intercity train derails killing 6 people

a maglev train collides with a maintenance vehicle killing 21 people

an intercity train collides with a freight train killing 5 people

a metro trainset collides with a stationnary train killing 1 person

Was this succession of accidents the result of chance ...

or should it be explained by other phenomena?

- Was it due to an increase in rail traffic and more intensive operation of the networks ?
- Was it due to a relaxation of monitoring and maintenance ?
- Are drivers paying less attention to regulations ?
- Are the systems ageing and obsolete ?

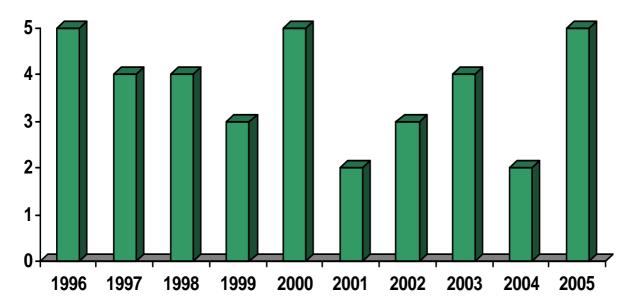
etc

In short, are we observing an increase in accidents which reveals a reduction in the level of safety of the systems ? Between **1996 and 2005**, we have listed the railway accidents that received the most media attention,

That is to say fatal accidents with a safety integrity level of 4, involving a collision or a derailment.

Only the **most industrialized countries** are selected : Western Europe, North America, Australia, Japan.

Statistical data



Number of annual railway accidents in the population concerned

Empirical mean: 3.7 accidents per year

Observed series : 5 accidents in 4 months = density 4 times higher

Probabilistic model

• The number of accidents that occur in a period **depends only on its duration**. The temporal density of accidents is therefore constant.

This hypothesis is equivalent that the appearance of the series can be explained by statistical variations.

- Accidents are mutually independent.
- Two accidents cannot occur at the same time.

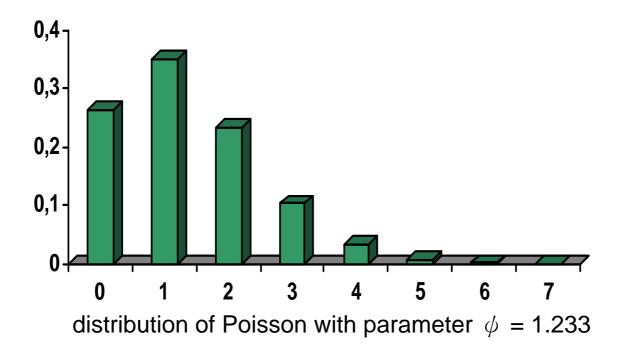
 $X_{\Delta t}$: Number of accidents occurring during a period of duration Δt

 $X_{\Delta t} \rightarrow P(0,3083.\Delta t)$ with Δt in months

Simplistic calculation n°1 using one window

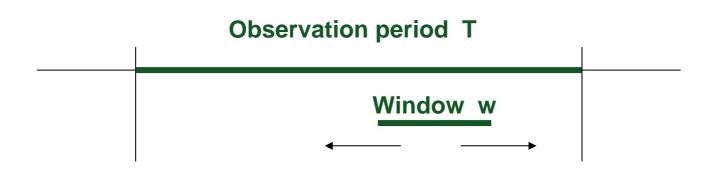
$$X \triangle t \rightarrow P(0.3083. \Delta t)$$

 $X_4 \rightarrow P(1.233)$ for the period $\Delta t = 4$ months



 $P(series) \approx P(X_4 \ge 5) \approx 0.0086$ (1)

Sliding window



- Window : w = 4 months
- Non-specialist observer : T = 1 year
- Professionnal observer : T = 10 years

Brief calculation n°2 using disjoint windows

Observation period T

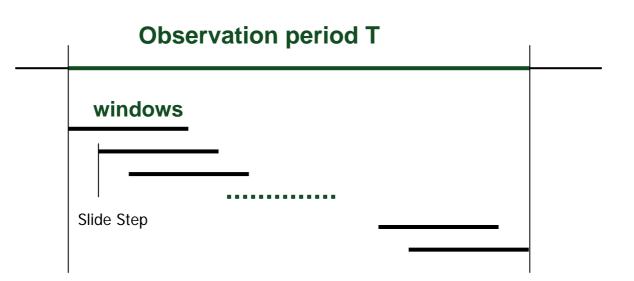
 F_i : « the window i contains at least 5 accidents »

$$\mathsf{P}(\mathsf{series}) = \mathsf{P}(\bigcup_{i=1}^{\mathsf{L}} F_i) = 1 - \mathsf{P}(\bigcap_{i=1}^{\mathsf{L}} \overline{F_i}) = 1 - \mathsf{P}(\overline{F_i})^{\mathsf{L}}$$

T = 1 year P (series) =
$$1 - (1 - 0,0086)^3 = 0.026$$
 (2)

T = 10 years P (series) = $1 - (1 - 0,0086)^{30} = 0.228$ (3)

More precise calculation n°3 using Poincaré formula



For T = 1 year and a slide step of 1 month : 9 windows

Certain windows overlap : dependent events

Poincaré's formula

Poincaré's formula :

$$P\left(\bigcup_{i=1}^{9} F_{i}\right) = \sum_{p=1}^{9} [(-1)^{p+1} \cdot \sum_{1 \le i1 < i2 < K} P(F_{i1} \cap F_{i2} \cap K \cap F_{ip})]$$

When the events are **disjoint**, they are **independent** :

$$\mathbf{P}_{\mathbf{i} \cap \mathbf{j} = \emptyset}(\mathbf{E}_{\mathbf{i}} \cap \mathbf{E}_{\mathbf{j}}) = \mathbf{P}(\mathbf{E}_{\mathbf{i}}) \cdot \mathbf{P}(\mathbf{E}_{\mathbf{j}})$$

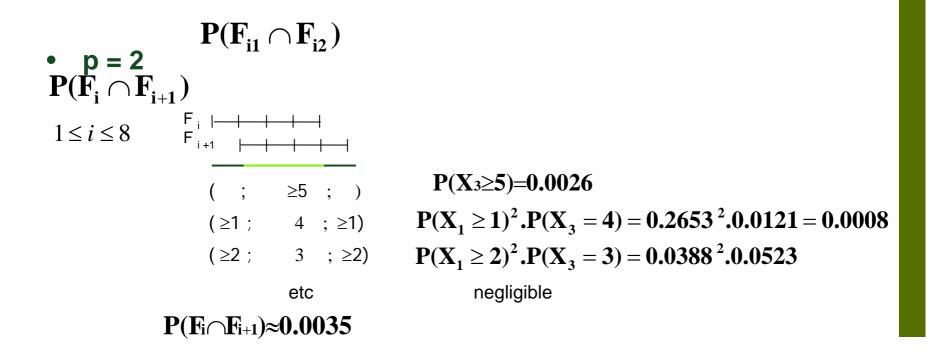
$X_{\Delta t} \rightarrow P(0.3083.\Delta t)$

1

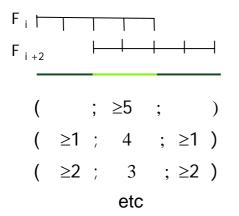
$$P(\bigcup_{i=1}^{9} F_{i}) = \sum_{p=1}^{9} [(-1)^{p+1} \cdot \sum_{1 \le i1 < i2 < K} P(F_{i1} \cap F_{i2} \cap K \cap F_{ip})]$$

$$\begin{split} P(F_{i1}) &= P(F_i) = P(X_4 \geq 5) = 0.0086 \\ \sum_{1 \leq i \leq 9} P(F_i) \approx 9.0.0086 \approx 0.0774 \end{split}$$

 $\mathbf{p} =$



• **p = 2**
$$P(F_i \cap F_{i+2})$$
 $1 \le i \le 7$



$$\begin{split} P(X_2 \ge 5) &= 0.0004 \\ P(X_2 \ge 1)^2.P(X_2 = 4) &= 0.4602^2.0.0032 = 0.0007 \\ P(X_2 \ge 2)^2.P(X_2 = 3) &= 0.1274^2.0.0211 = 0.0003 \\ \text{negligible} \end{split}$$

 $\mathbf{P}(\mathbf{F}_{\mathbf{i}} \cap \mathbf{F}_{\mathbf{i+2}}) \approx \mathbf{0.0015}$

$$\mathbf{P}(\mathbf{F}_{\mathbf{i}} \cap \mathbf{F}_{\mathbf{i+3}}) \qquad 1 \le i \le 6$$

etc

 $\mathbf{P}(\mathbf{F}_{i} \cap \mathbf{F}_{i+3}) \approx \mathbf{0.0004}$

•
$$p = 2$$
 $P(F_i \cap F_{i+p})$ $p \ge 4$ $5 \le i + p \le 9$
 $P(F_i \cap F_{i+p}) = P(F_i) \cdot P(F_{i+p}) = P(F_1)^2 = 0.00007$

 $\sum_{1 \le i1 < i2 \le 9} P(F_{i1} \cap F_{i2}) \approx 8.0.0035 + 7.0.0015 + 6.0.0004 + 15.0.00007 \approx 0.0420$

• **p** = 3

•
$$\mathbf{P}(\mathbf{F}_{i1} \cap \mathbf{F}_{i2} \cap \dots \cap \mathbf{F}_{ip})$$

4

negligible

therefore

$$\mathbf{P}(\bigcup_{i=1}^{9}\mathbf{F}_{i}) \approx \mathbf{0.043}$$

This method has limits because the slide step should be shorter :

(4)

large number of windows

extremely large number of partitions

This calculus cannot give an accurate calculation

Scan Statistics

- Detection and analysis of a succession of close events, in time or space, to know if it occurs by coincidence or if it is an abnormal series
- American researchers since 1960's

• Applications :

unusual clusters in cancer clusters of palindromes in DNA as a clue for virus replication capacity of phone centers clusters of defective objects within a production line

Powerful computation methods

by integration

(exact results)

 by framing Bonferroni bounds (approximated results)

• by combinatorial analysis (exact results)

random walks and reflection principle ballot problems Karlin-MacGregor theorem (1959) Barton et Mallows corollary (1965) Kolmogorov-Smirnov statistic

• by approximation

(approximated results)

product-type approximation Poisson approximation

Accurate calculation n°4 using a Scan Statistics formula

Naus' formula (1982)

$$P \approx 1 - Q_2 (\frac{Q_3}{Q_2})^{L-2}$$

Wallenstein, Naus et Glaz approximation (1993)

In our example : k = 5 $\psi = 1,233$

T = 1 year
$$P \approx 0.062$$
 (5)

 $T = 10 \text{ years} P \approx 0.552$ (6)

Synthesis of calculations

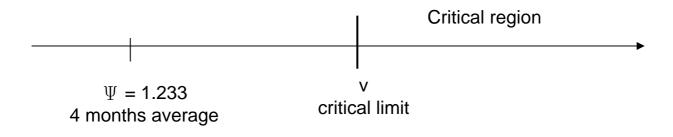
		T = W	T = 3w	T = 30w
		4	1 year	10
		months		years
Simple	Disjoints windows	0.009	0.026	0.228
Approach		(1)	(2)	(3)
More precise	Step of		0.043	
Approach	discretization of one month		(4)	
Accurate	Step of		0.062	0.553
computation	discretization of one day		(5)	(6)

Probability of appearance of the series with regard to the approach

Statistical test

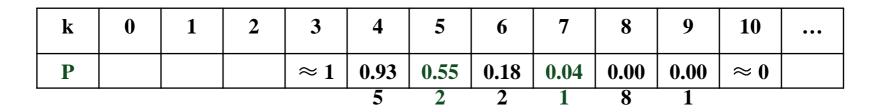
$\begin{cases} H_0 &= The \ temporal \ density \ of \ accidents \ is \ constant \\ H_1 &= \overline{H_0} \end{cases}$

Statistic for the test : $\ensuremath{\textbf{Sw}}$



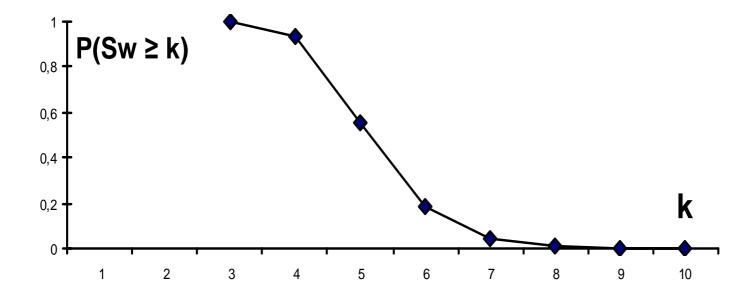
 $P(Sw \ge k)$ calculated with the Naus' formula T = 10 years

Statistical test



With a risk $\alpha = 0.05$

k = 7



Conclusion

• Some series of disasters may be explained by statistical variations

The hypothesis of the constant temporal density of accidents is not rejected

• The phenomenon of cluster may be amplified

Media attention Situational or exogenous causes

• Intuition is misleading

Unexpected results

The coincidence does not share the events in a regular way