PSAM 9

Case Study in the Assignment of Safety Integrity Requirements for Driverless Metro System in Singapore

Singapore Land Transport Authority (LTA)

Chin Nang Tang

Content of Presentation

- About This Assessment
- Definitions of Safety Integrity Requirements
- Process of Assignment
- Demonstration of Safety Integrity Requirements

About this Assessment

- Develop High Level SIL targets for similar application in Singapore RTS
- Provide justifications for the development of Lower Level SIL targets
- Define Criteria for Demonstration
- Establish a reference for Driverless Railway
 System

Definitions of Safety Integrity Requirements

Definitions of Safety Integrity Requirements

EN50129:2003 (Table A.1-SIL Table)

Tolerable Hazard Rate (THR) per hour and per function	Safety Integrity Level
$10^{-9} \leq THR < 10^{-8}$	4
$10^{-8} \le THR < 10^{-7}$	3
$10^{-7} \leq THR < 10^{-6}$	2
$10^{-6} \leq THR < 10^{-5}$	1

Hazard Analysis

Derive the THR

Assignment and Apportionment

- Hazard Identification
- Mitigation Measures analysis
- Identification of Safety related Functions
- Define Tolerable Risk Level
- Define Tolerable Accident Rate
- Define Tolerable Hazard Rate
- Define their Relationships with SIL
- Assign to High Level Safety Function
- Functional Breakdown
- Assign to Subsystem Safety Functions

Hazard Analysis

Hazard	Potential Accident	Safety Requirement	Safety Function	Accident Severity
Train departure with opening door	Fall of passenger from train to track	The train and platform screen doors closing process should be provided in safety	Provide safe train door opening/closing operation by interlocking with train propulsion system; Signalling system ensure train starting off moving when both PSD and train doors are closed	Fatalities and/or multiple severe injuries (I)

Define Tolerable Hazard Rate

- Tolerable Risk Level
- Tolerable Accident Rate (TAR)
- Tolerable Hazard Rate (THR)

Define Tolerable Hazard Rate

(LTA Risk Matrix)

			Accident Severity Category					
	Risk Cate	egory	П		III	IV		
			Catastrophic	Critical	Marginal	Insignificant		
	Frequent	≥1acc per 100 hrs	Intolerable	Intolerable	Intolerable	Undesirable		
Accident Frequency Category	Probably	$1x10^2 \text{hrs} < 1acc \leqslant \\ 1x10^4 \text{hrs}$	Intolerable	Intolerable	Undesirable	Tolerable		
	Occasional	$1x10^4 \text{hrs} < 1acc \leqslant 1x10^5 \text{hrs}$	Intolerable	Undesirable	Undesirable	Tolerable		
	Remote	$1 \times 10^5 \text{hrs} < 1 \text{acc} \leqslant 1 \times 10^6 \text{hrs}$	Undesirable	Undesirable	Tolerable	Negligible		
	Improbable	$1x10^6 \text{ hrs} < 1acc \leqslant 1x10^8 \text{ hrs}$	Tolerable	Tolerable	Negligible	Negligible		
	Incredible	$1x10^{8} \text{ hrs} < 1acc $ $1x10^{10} \text{ hrs}$	Negligible	Negligible	Negligible	Negligible		

Define Tolerable Hazard Rate

Tolerable Accident Rate =
Tolerability Hazard Rate (THR) x Probability of
Accident Occurrence (P)

Probability of Accident Occurrence (P) is determined by:

- Probability of Hazard Occurrence leading to the Accident

TI	HR Table	190	Probability of Accident Occurrence							
Sev	TAR	1	0.5	0.1	0.05	0.01	0.005	0.001	0.0005	0.0001
I	1.00E-10	1.0E-10	2.0E-10	1.0E-09	2.0E-09	1.0E-08	2.0E-08	1.0E-07	2.0E-07	1.0E-06
П	1.00E-08	1.0E-08	2.0E-08	1.0E-07	2.0E-07	1.0E-06	2.0E-06	1.0E-05	2.0E-05	1.0E-04
III	1.00E-06	1.0E-06	2.0E-06	1.0E-05	2.0E-05	1.0E-04	2.0E-04	1.0E-03	2.0E-03	1.0E-02
IV	1.00E-04	1.0E-04	2.0E-04	1.0E-03	2.0E-03	1.0E-02	2.0E-02	1.0E-01	2.0E-01	1.0E+00
S	IL Table			Pr	obability o	of Accident	Occurren	ice	/ 1/	
Sev	TAR	1	0.5	0.1	0.05	0.01	0.005	0.001	0.0005	0.0001
I	1.00E-10	4	4	4	4	3	3	2	2	1
II	1.00E-08	3	3	2	2	1	1	0	0	0
Ш	1.00E-06	1	1	0	0	0	0	0	0	0
IV	1.00E-04	0	0	0	0	0	0	0	0	0

Assignment and Apportionment

- The train and platform screen doors closing process should be provided in safety
 - Accident Severity I
 - Tolerable Accident Rate 1E-10
 - Probability of Occurrence 0.1
 - Tolerable Hazard Rate 1E-9
 - SIL Target 4

Assignment and Apportionment

- when Lower Level Safety Functions are independent
- when they are redundant each other

then

Additional Apportionment Factor 0.01 will be assigned to "P"

	Frequent	≥1acc per 100 hrs			
	Probably	$1x10^2 hrs < 1acc \leqslant 1x10^4 hrs$			
Accident	Occasional	$1x10^4 hrs < 1acc \leqslant 1x10^5 hrs$			
Frequency Category	Remote	$1x10^5 hrs < 1acc \leqslant 1x10^6 hrs$			
	Improbable	$1 \times 10^6 \text{hrs} < 1 \text{acc} \leqslant 1 \times 10^8 \text{hrs}$			
	Incredible	$1x10^8 \text{ hrs} < 1acc \leq 1x10^{10} \text{ hrs}$			

Assignment and Apportionment

Safety Requirement	THR	SIL	Safety Function	Р	THR	SIL
The train and platform screen doors closing process should be provided in safety	1E-9	4	Provide safe <u>train door</u> opening/closing operation by interlocking with <u>train propulsion</u> system	0.01	1E-7	2
		Signalling system ensure train starting off moving when both PSD and train doors are closed		1E-7	2	

Assignment and Apportionment

Hazard

The detrainment door opening information shall be provided and keep passenger in safe state

Safety Requirement

The train and platform screen doors closing process should be provided in safety

Safety Function 02

Signalling system ensure train starting off moving when both PSD and train doors are closed

Safety Function 01

Provide safe <u>train door</u> opening/closing operation by interlocking with <u>train</u> <u>propulsion</u> system

<u>Function</u>

Other Safety

H

Safety Function 02-1

Checking command should be provided with Signalling system to allow the execution

Ħ

Ħ

Lowering the SIL Target by doing Apportionment

Demonstration of Safety Integrity Requirements

Safety Integrity Requirement for Safety Function

Systematic Faults

- Quality Management requirements
- Safety Management requirements –compliance with Codes, Industrial Practices, Statutory Regulations, etc.

Random Failures

Quantitative Target is met

