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What this paper is NOT about  

• NOT about anatomy of planning and optimization 
algorithms
– But to formulate a risk analysis and planning framework 

that plugs in different planning and optimization 
schemes like FMINCON, ILOG, and GA

• NOT about generation of an “optimal” plan
– But to provide a “near-optimal plan” of non-

deterministic events whose probability of failure PF can 
be quantified analytically and by simulation

• NOT about tedious mathematical derivations 
– But to demonstrate that non-deterministic events and 

their relationships (constraints) can be mathematically 
modeled, and lend itself to mathematical optimization 
and empirical simulation



KMC-303/10/2005 Risk Analysis for Resource Planning Optimization

Main goals

• The main purpose of this paper is to introduce a 
risk management approach that allows planners to 
quantify the risk and efficiency tradeoff in the 
presence of uncertainties, and to make forward-
looking choices in the development and execution 
of the plan

• Demonstrate a planning and risk analysis 
framework that tightly integrates mathematical 
optimization, empirical simulation, and theoretical 
analysis techniques to solve complex problems
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Problem statement (1)

• Extending link analysis techniques to resource planning 
optimization in the presence of uncertainties
– Standard link analysis is a proven statistical risk analysis technique 

for evaluating communication system performance and trade-off
– Many of the gain/loss parameters (in dB’s) of the link are statistical

• Parameter x with designed value xd, minimum value, xmin, maximum 
value xmax, and a probability function f(x), result in xmean and xvar

– With the ‘hand-waving’ assumption that the sum of all gain/loss link 
parameters has a Gaussian distribution with distribution N(m,σ2), one 
can design a link and establish link margin policy based on statistical 
confidence level measured in terms of σ (i.e. n-sigma event)

– Non-deterministic events has variable time durations 
– Extend the link performance analysis (in dB’s) to non-deterministic 

event planning (in time)
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Problem statement (2)

• Some notations
– Planning horizon [Ts, Te]: given start time Ts, given end time Te, all 

events must fit within [Ts, Te]
– Event Ei: start time to

i, duration di, where to
i is the state variables to 

optimize, and di is a random variable that has a unimodal probability 
distribution function pi(di) with mean mi and standard deviation σi

– A plan consists of a number of events within the planning horizon, 
and events Ei and Ej might bear certain pair-wise relationship Rij

– There are one or more resource limits that cannot be exceeded
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Problem statement (3)

• Some definitions of terms
– Planning is the process of a priori scheduling the events 

within the planning horizon
– There are one or more objective functions that the plan 

is trying to optimize subjected to the given rules and 
constraints

– A plan is said to be successfully executed if 
• All events in the plan can be accommodate within the planning 

horizon
• There is no resource usage that exceeds the maximum 

allowable limit 
• There is no violation to the set of pre-defined rules and 

constraints
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Applications (1)

• Space mission planning and sequencing
– Mission planning/sequencing translates science intents 

and spacecraft health and safety requests from the users 
into activities in the mission plan

– Non-deterministic spacecraft events: star-tracker to 
acquire a star, data volume per pass, slew, … etc. 

– Spacecraft resources: power/energy, data rate/data 
volume, thermal limits, onboard storage, CPU etc.

– Event-driven spacecraft activities: an activity could be 
contingent upon the complete of other activities, upon 
the state of the spacecraft and/or estimated resources, or 
triggered by real-time events such as observation of a 
supernova explosion
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Applications (2)

• Risk analysis for cost and schedule planning 
– Model budget (resource) and schedule (duration) and their 

uncertainties
– Model tasks dependencies 

• Risk analysis for communication network planning
– Model link durations and their uncertainties

• Time uncertainty to transmit a certain fix data volume in the 
presence of retransmission (e.g. Prox-1)

– Model link availabilities as resources
• Number of users in a multiple access scheme
• Data rates

– Model link dependencies 
• Store-and-forward relay link: forbidden synchronic
• Bent-pipe relay link: inclusion
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Risk analysis approach by iterative 
simulation and optimization

• Given an acceptable risk level Pth, 
find a plan with PF ≤ Pth by iterative 
optimization and simulation 

• Plan is intentionally sub-optimal to 
ensure a stable solution
– Start time to

i is not dependent upon the 
completion time of any prior events

– Ensure successful execution of plan as 
long as di ≤ Δi

• Simulation always converge
• PF is always “well-behaved”, i.e. 

increasing the task duration Δi will 
always yield lesser events to be 
accommodated but higher probability 
or completion or vice versa

Set risk level Pth
Initial guess of 
scaling factor λi

Optimization
Find optimal plan

with assigned 
duration Δi=mi+λiσi

Simulation of PF
Given to

i, generate
di using p(di) to 

estimate PF

Does 
PF below Pth

?

Stop

U
pdate λ

i
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Mathematical representation of non-
deterministic events and constraints (1)

• Examples of objective Functions
– Given start times to

1, to
2, … to

n (state variables to optimize)
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Mathematical representation of non-
deterministic events and constraints (2)

• Example of linear constraints
– Ranges of start time to
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Mathematical representation of non-
deterministic events and constraints (3)

• An example of non-linear constraints (with explanation)
– Forbidden synchronic: when two given events are both 

scheduled, they must not occur simultaneously at any point in 
time
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Mathematical representation of non-
deterministic events and constraints (4)

• Other examples of non-linear constraints (with no 
explanation)
– Inclusion: if event i is scheduled, then event j must be 

initiated in some chosen time interval [wo
j, wf

j]

– Exclusion: if event i is scheduled, then event j must not be 
initiated in some chosen time interval [wo

j, wf
j]

– Others: precedence relationships, resource constraints, etc. 

( ) 02 ≤−+−− j
f

j
o

j
f

j
o

j
o wwwwt

( ) 02 ≤−−−− j
f

j
o

j
o

j
o

j
f wwtww



KMC-1403/10/2005 Risk Analysis for Resource Planning Optimization

Empirical results and theoretical results (1)

• Theoretical result: a simple upper bound of PF
– Denote PF,i the probability that event i would end with a duration di that 

exceeds the predetermined duration Δi, and PS,i = 1 - PF,i

– Denote PS the probability that the schedule succeeds, meaning it does not
violate constraints nor exceeds the planning horizon; it is obvious that PS  
≥ PS,1 PS,2… PS,n, because PS,1 PS,2… PS,n does not take into account all 
the possible ways in which event may exceed the designated durations 
determined by PS,I, and still have a successful schedule 

– Therefore

– Which results in an upper bound of PF given by

• The upper bound of PF can be used to guide the adjustment of λi
in the iterative optimization/simulation process 

)1()1(1...11 ,1,,1, nFFnSSSF PPxPxPPP −⋅⋅⋅−−≤−≤−=

nFFFF PPPP ,2,1, ⋅⋅⋅++≤
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Empirical results and theoretical results (2)

• Theoretical result: Saddle-Point approximation of P’F of an 
Ensemble of Tasks in Tandem
– In task planning, a common situation is that there are a number of tasks 

that are required to execute in tandem, sometime with a constraint on 
overall duration

– If no dependencies between these tasks with other tasks, one can treat 
them as a single task to simplify downstream analysis and optimization

– The probability that the total duration of tasks exceed α, P’F(z > α), can 
be approximated by 

– See next chart for outline of derivation
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• Some notations
– x1, x2, … xn are n independent random variable with pdf fxi(xi)
– z is the sum of x1, x2, … xn
– Ψxi(s) is the characteristic function of xi, and Ψz(s) is the 

characteristic function of z
– q+(α) is the tail probability of z

• Analysis challenges
– Evaluation of pdf of sum of n variables requires n-1 nested 

integration
– Inverse of Ψz(s) is usually extremely difficult, if not impossible
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Empirical results and theoretical results (4)

• 10-event case toy problem
– Events 1 and 3 may not overlap
– Event 1 must finish before event 4 begins
– Each event consumes 1 unit of resource, limit 3 at any time
– PDF and its parameters of each of the ten event durations

Event ID Type of Dist. Parameters Min. Value Max Value

1 Uni. NA 5 7

2 Beta α=4, β=4 1 3

3 Norm µ=10, σ=.5 NA NA

4 Tri. Peak=4 3 5

5 LogN µ=2, σ=.5 NA NA

6 Uni. NA 2 5

7 Beta α=5, β=5 3 8

8 Uni. NA 1 3

9 Tri. Peak=3 2 5

10 Tri. Peak=4 2 6
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Empirical results and theoretical results (5)

• 10-event case optimization and simulation results
– Set durations Δi such that each event has a 99% confidence of successful 

completion

Simulation ID Probability of Schedule (10 
Events) Failing (5000 runs)

1 0.0424

2 0.0430

3 0.0458

4 0.0448

5 0.0382

6 0.0372    

7 0.0358

8 0.0434    

9 0.0400

10 0.0430

Ave. PF 0.0414

Upper Bound 
of PF

0.10
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Empirical results and theoretical results (6)

• 30-event case
– 2 precedence relations, 1 exclusion relation, 1 resource limit of 3
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Using Stochastic Optimization to Find a 
Good Initial Point (1)

• Challenges of optimization
– Speed and optimization performance depends strongly on the initial 

guess of the state vector [to
1, to

2, …to
n]T

– A bad guess results in slow convergence and/or poor locally-optimal 
solution

• Improved optimization using stochastic optimization 
algorithm
– Use stochastic optimization algorithm (e.g. genetic algorithm) to find 

a set of viable and promising state vectors to serve as initial guesses
– Use the initial guesses as input to more sophisticated optimization 

schemes (e.g. Sequential Quadratic Programming in Matlab’s
FMINCON) to generate a set of locally-optimal solutions

– Obtain an “overall” optimal solution out of all the local optima by 
subjecting them to a probabilistic simulation to determine likelihood 
of failure and to compare objective values
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Set of Initial 
Guesses

Genetic 
Algorithm

Sequential 
Quadratic 

Programming: 
FMINCON

Locally 
Optimal 
Solution 

Set

Using Stochastic Optimization to Find a 
Good Initial Point (1)
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• 100 event case, 40 constraints, 2 resources limit of 4 

Using Stochastic Optimization to Find a 
Good Initial Point (2)
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• Resource#1 usage profile of 100 event case

Using Stochastic Optimization to Find a 
Good Initial Point (3)
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