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Final Disposal of Radioactive Waste in Salt Rock
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The ERAM LLW / ILW Repository

Old salt/potash production mine in 
eastern Germany

Used as a repository from 1971 to 
1998

Disposal of low-level waste (LLW) 
and intermediate-level waste (ILW)

Total inventory 4·1014 Bq or ~3 MSv

Currently in the procedure of 
licensing for closure

Comprehensive performance 
assessment (PA) studies available

Very complex mine structure

Extensive simplification for modelling
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Generic SF / HLW Repository

Model yields “zero-output” for most 
scenarios and parameter 
combinations (no brine intrusion)

Radionuclide release for specific 
disturbed-evolution scenarios

To be set up in homogeneous salt

Simple repository structure 

Model close to real structure

Recent generic concept for salt host 
rock

Disposal of heat-generating waste

– Spent Fuel elements (SF) 

– vitrified high-level waste (HLW)

– intermediate-level waste (ILW)

Disposal of all waste accumulating in 
Germany until 2080
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D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

221.5 200.9 210.5449.5

279.13

AD-N

AD-S

CF (230 000 m3)

2632.9

Repository Seals:

Shaft (L = 50 m, A = 44.2 m2) Drift seal (L = 50 m, A = 23 m2)42 ZS-N, Q

Cross section [m2]:

23 31ZS-S BS4.7

70 63 60

221.5



Sensitivity Analysis

Uncertainties
– Model and scenario uncertainties

future development
– Parameter uncertainties

Physical parameters
Technical parameters
Geological parameters

Why do we perform SA?
– Identification of research needs
– Identification of technical needs

Deterministic SA
– Specific parameter variations

Monte-Carlo-based SA
– Rank transformation 

(highly non-linear systems)
– Calculation of SPEA, SRRC, PRCC
– Smirnov test
– Application to 

different points in time 
maximum of each run

What do we learn?
– Qualitative parameter ranking

Open questions
– How reliable are the rankings?
– Which parameters are really important?
– Which parameters do not play a role at all?



Variance-based Sensitivity Analysis: 
Fourier Amplitude Sensitivity Test (FAST)

Systematic scan of parameter space using periodic functions 
Interference-free frequencies for different parameters
Random element by introducing random phase shifts
Fourier Analysis of model output yields parameter influence
Calculation of first-order sensitivity indices

– isolated influences of individual parameters
Calculation of total-order sensitivity indices (E-FAST)

– influences of parameters in interaction with all others
Quantitative sensitivity measures
Applicable to non-linear and non-monotonic systems
High number of model runs necessary
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FAST Analysis of the ERAM Model

43 parameters

Two sets of model evaluations: 
– 10019 runs each

– Different random seeds

FAST evaluation for many points in 
time

First-order indices plotted vs. time

Unsatisfying results
– Essential discrepancies

– No unique assessment of 
parameter importance possible

Statements to be deduced:
– Initial permeability dominates 

clearly over long time period

– Importance of far field parameters 
increases at late times

– Many parameters are of nearly no 
importance at any time



Why these Strange Results?

FAST doesn’t perform well with discrete parameters

Several switch-like parameters of minor importance
– Omitting them does not help

“Close-to-discrete” behaviour of initial permeability at each point in time
– Nearly sudden failure of seal in each run at a characteristic time, dependent 

on initial permeability

– Model output highly depends on whether or not seal has failed

– Omitting the most important parameter essentially improves consistency!

Parameter seems to disturb the FAST evaluation!



FAST Analysis of the Generic SF / HLW Model

6 parameters

Two sets of model evaluations
– 3030 and 6054 runs, respectively

– Different random seeds

FAST evaluation for many points 
in time

First-order indices plotted vs. time

Again: Unsatisfying results
– Essential discrepancies

– No unique assessment of 
parameter importance possible

Statements to be deduced:
– Shaft permeability dominates over 

long time period

– Certain influence of dam 
permeability and convergence rate



Why again such strange results??? 

There are no discrete or switch-like parameters in this model!

The zero-run “problem”:
– About 85 % of all runs yield an exact zero output

– Many of the other runs yield very low output

– Poor performance of FAST is plausible

– This is beneficial for safety, but bad for probabilistic SA!

Variance is dominated by just a few runs
– Low robustness of variance-based evaluation

5169
Zero runs

85%
1,9%

11 runs
40,5%

1 run 9,9%

6054 runs Variance



Improving Robustness: Transformation of Model Output

Perform transformation: 

0 ➔ 0

Near-zero ➔ near-zero

a ➔ 1

High value ➔ log (high value)

)1(log* 2 +=
a
yy How to find a proper value for a ?

Parameter discriminates “low” values 
from “high” values

Could be fixed subjectively

Here: calculated such that 
E(y*) = 1

for each point in time

Results become much more significant!
– Clear dominance of shaft permeability

– Essential contributions from dam permeability and convergence rate

– Low significance of failure time and Kd



Conclusions

FAST does not always perform well with complex repository models

Discrete or switch-like parameters can disturb FAST evaluation

High zero-run probability impairs robustness of variance-based methods

A suitable output transformation can mitigate this problem

Generally, variance-based methods seem promising if applied carefully



Thank you for your attention!


