

Consistency of Judgement in the Usage of Probabilistic Safety Goals

Michael Knochenhauer, Relcon Scandpower Jan-Erik Holmberg, VTT (Technical Research Centre of Finland) Helena Gustavsson, Relcon Scandpower

Project overview

Nordic project "The Validity of Safety Goals"

NKS (Nordic Nuclear Safety Research)

NPSAG (Nordic PSA Group)

SAFIR (Finnish NPP safety research programme)

Co-operation with OECD/NEA WGRisk task 2006(2)

2008

2007

2006

BASIS	 CONCEPTS DECISION THEORETIC BACKGROUND EVOLVEMENT OF SAFETY GOALS EXPERIENCES FROM APPLICATION AND INTERPRETATION LIMITED INTERNATIONAL OVERVIEW ISSUES FOR FURTHER ANALYSIS USE OF SAFETY GOALS IN DECISION MAKING AMBIGUITIES IN DEFINITIONS OF SAFETY GOALS TREATMENT OF UNCERTAINTIES IN THE APPLICATION OF SAFETY GOALS 	PHASE 1	
ELABORATION	 AMBIGUITIES IN THE SCOPE OF SAFETY GOALS SAFETY GOALS ON DIFFERENT LEVELS SAFETY GOALS FOR NEW/OPERATING PLANTS CONSISTENCY IN USAGE OF SAFETY GOALS CRITERIA FOR ASSESSMENT OF RESULTS FROM PSA LEVEL 2 SAFETY GOALS RELATED TO OTHER MAN- MADE RISKS IN SOCIETY EXPANSION OF INTERNATIONAL OVERVIEW WG RISK TASK ON SAFETY GOALS 	PHASE 2	<mark>JECD NEA WG R</mark> ISK ISTIC RISK CRITERIA FOR NPPS"
GUIDANCE	 USE OF SUBSIDIARY CRITERIA USE OF PROBABILISTIC ANALYSES IN SUPPORT OF DETERMINISTIC SAFETY ANALYSIS EXPANSION OF INTERNATIONAL OVERVIEW WG RISK TASK ON SAFETY GOALS GUIDANCE FOR FORMULATION APPLICATION INTERPRETATION 	PHASE 3	ОЕСD NE Probabilistic R isi

What is a probabilistic safety goal?

• Lots of alternative formulations

- Risk/Safety limit/criteria/target/objective
- ... sometimes (but not always) synonyms

• Main elements

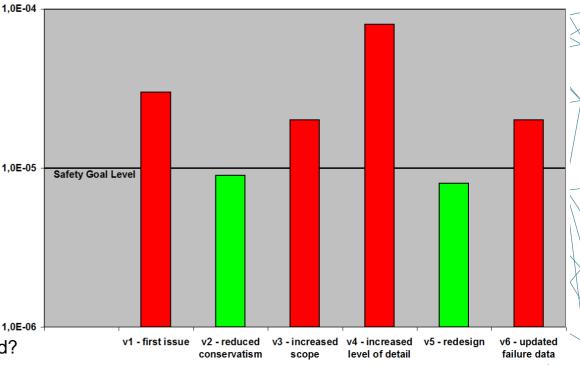
- Probabilistic
 - The frequency or probability to be achieved/demonstrated/aimed for
- Safety
 - The risk metric (fatalities, core melts, system failures, etc.)
- Goal
 - ... vague... (voluntary/mandatory; limit/objective, etc.)

Also needed

- ...but usually receiving less attention
- Definition of scope of plant model and of procedure to calculate risk level to be compared ("Target PSA")
- Procedure for applying the goal and acting on the outcome of the comparison (goal met / goal violated)

Summary of Swedish safety goals

Authorities	Vattenfall	Sydkraft / EON
1985 <u>Core damage</u> - <u>Release</u>	1990 <u>Core damage</u> 10 ⁻⁵ /year with a high degree of confidence	1995 <u>Core damage</u> 10 ⁻⁵ /year
"Extremely unlikely" release of more than 0,1 % of the inventory of the cesium isotopes Cs-134 and Cs-137 in a core of 1800 MWt. → Often interpreted as	bre than 0,1 % of the ventory of the cesium bropes Cs-134 and Cs-137 in core of 1800 MWt.	10 ⁻⁷ /year for release involving more than 0,1% of the core inventory excluding noble
f(LR) < 10 ⁻⁷ /year	2006 <u>Core damage</u> 10 ⁻⁵ /year for core damage	2006 <u>Core damage</u> 10 ⁻⁵ /year for severe core damage
	<u>Release</u> 10 ⁻⁷ /year for a release involving more than 0,1% of the core inventory of substances causing ground contamination	Release Frequency of release involving more than 0,05-0,1% (depending on thermal effect) of the core inventory excluding noble gases shall be <u>considerably lower</u> than 10 ⁻⁵ /year.



Starting point

• Long experience with PSA

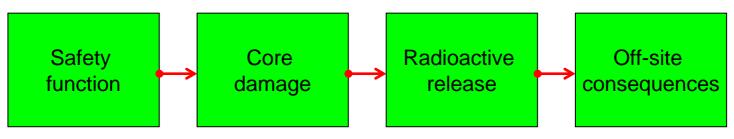
- Gradual increase of scope and level of detail since early 1980:s
- Today's PSA:s are more or less complete
- Safety goals not possible to fulfill?
 - Safety goals outlined in the 1980s hard to achieve for operating plants.
 - NRC/IAEA 10⁻⁴ per year for CDF (Core damage frequency)
 - Swedish utilities 10⁻⁵ per year for CDF
- This has aroused confusion!
 - What safety goals should be applied?
 - Is the risk level of the plants too high?
 - Are PSA:s too conservative?
 - Are safety goals applied in an incorrect way?

Some conclusions so far...

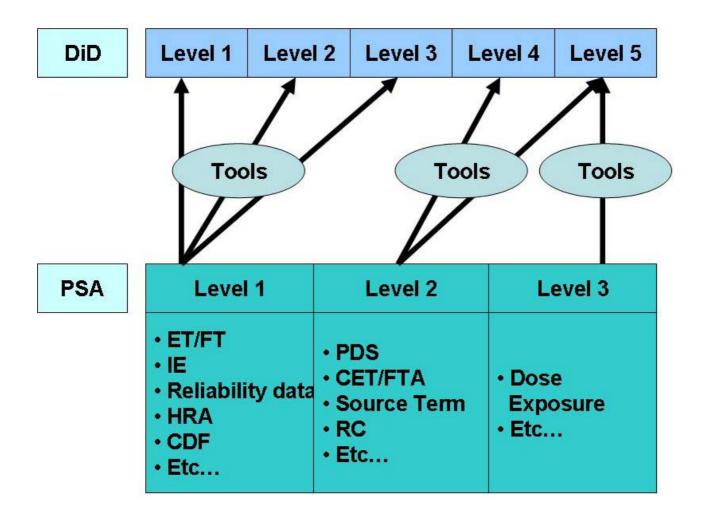
- Status of safety goals in decision making
- Ambiguities in the definition of safety goals
- Ambiguities in the scope of safety goals
- Relationship between goals on different levels
- Consistency in judgement when applying safety goals

Status of PSA safety goals in decision making Opinions about use of safety goals [interviews]

- Most are in favor of informal use of safety goals
 - uncertainties in the methodology
 - possibility for flexible handling of risk
- Strict application of safety goals may switch attention to fulfillment of safety goals instead of open-minded assessment of safety
- Concern that very strictly applied safety goals could lead to
 - unreasonable requirements on safety improvements
 - "manipulation" of results


Status of PSA safety goals in decision making Handling of violations [interviews]

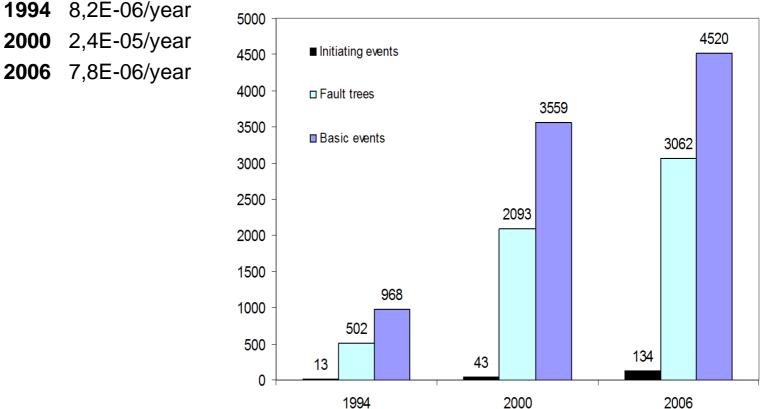
- If goals are used, rules for violations should be defined/discussed
- Quite formal procedures for PSA safety goals in place at all Swedish plants, but not strictly enforced
 - PSA results have often exceeded safety goals
 - Implicitly, a graded approach has been applied
 - the IAEA-goal CDF = 1E-4/yr is a limit
 - the own goal CDF = 1E-5/yr is a target
- In Finland, utility goals for operating plants are informal and desired targets
- Exceedence of safety goal is a trigger for investigation and prioritisation.


Levels of Safety Goals

- Important aspects of risks from nuclear power plants
 - Health risk to people (individual/collective)
 - Risk of long-term contamination (evacuation, land use)
- Accidents with significant off-site damage are extremely rare
- Levels of safety goals
 - Off-site consequences (corresponds to PSA level 3)
 - Radioactive release from plant (corresponds to PSA level 2)
 - Core damage in plant (corresponds to PSA level 1)
 - Loss of important safety function (ECCS, RHR, scram, containment isolation)

Assessing DiD levels with PSA?

Consistency in judgement when applying safety goals


Consistency over time

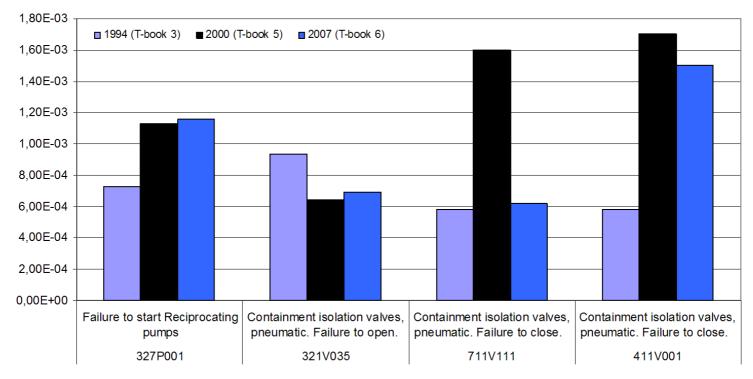
- Same safety goals applied to specific plant at different points in time
- Perceived to be one of the main problems in the usage of safety goals
- <u>Limited</u> comparative review performed of three generations of the same PSA
 - Forsmark 1 (ASEA-Atom BWR commissioned in 1980)
 - PSA versions from the years 1994, 2000 and 2006
 - During these years, the PSA increased considerably in scope and level of detail.
 - Comparison restricted to a scope corresponding to the 1994 PSA (mainly internal events)

Development of the F1 PSA over time

• CDF differed quite considerably over the years:

Consistency in judgement – Aspects analysed

- Cut-off in PSA quantification
- Changes in component failure data
- Changes in initiating event frequency
- Conditional CDP (disregarding IE frequency)
- Changes in modelling of the plant, including plant changes and changes in success criteria


Cut-off in PSA quantification

- Comparison of quantification results with original cutoff and new cut off was performed
 - Absolute cut-off 1E-12 and relative cut-off 1E-6
- In some cases this had a noticeable influence
 - Mainly cases with CDF results close to the cut-off limit
- On total level the CDF influence is less than 1%

Changes in component failure data

- Data derived from T-book (Nordic Reliability Data Book)
 - T-book versions 3, 5 and 6
- Data for a number of components were compared

Changes in initiating event frequency

• Transient frequencies

- Largely based plant operating experiences, i.e., differed only slightly between the years.
- Part of the transients were modelled as CCI events in the 2000 and 2006 versions of the PSA, and some of these made large contributions to the total CDF.

LOCA frequencies

- Based on WASH 1400 in all three PSA:s
- PSA results differed considerably because LOCA events were split up into more and more detailed break locations, with more specific damage modelling.
- Loss of external power modelled in all three PSA:s with very differing total impact
 - Basis for modelling the event different in all three PSA:s.

Conditional CDP (disregarding IE frequency)

- Eliminates the impact from differences over time in IE frequency
- Comparison made of CCDP for every group of initiating events.
- Large differences were identified, due to e.g.
 - Data changes
 - Changes in success criteria for safety systems
 - More realistic modelling of the impact of failures
 - More realistic modelling of the impact of initiating events (CCI).

Conclusion from comparison

- Very time-consuming to correctly identify the basic causes for changes in PSA results
 - A multitude of different sub-causes were combined and difficult to differentiate.
- Rigorous book-keeping needed to keep track of how and why results change
 - Especially important in order to differentiate "real" differences (plant changes, new component and IE data) from differences that are due to general PSA development (scope, level of detail, modelling issues).
 - This is becoming part of normal updating procedures.
- Insufficient book-keeping for the analysed PSA
 - PSA as a technique was quickly developing over the studied time period
 - Previous PSA version was always considered to be kind of a draft version of the PSA that was currently being developed

Project reports

- Phase 1 (2006)
 - Issued as SKI report 2007:06
- Phase 2 (2007)
 - Interim report issued by NKS (May 2008)
- Phase 3 (2008)
 - To be issued as SKI report (May/June 2009)

	SKI Report 2007:06
Research Probabilistic Safet	ty Goals
Phase 1 – Status and Ex Jan-Erik Holmberg Michael Knochenhaver	xperiences in Sweden and Finland
February 2007	
ISSN 11041374 ISSN SKIR07/06-5E	SKi

Available through www.ski.se

www.scandpower.com www.riskspectrum.com