## An Epistemic Approach for IAQ Assessment of Air-conditioned Offices in Hong Kong

P. S. Hui, L.T. Wong\*, and K.W. Mui Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Email: \*beltw@polyu.edu.hk

- People spend >70% time indoor
- Ensure safety and comfort of occupants in terms of IAQ



- Assessment of indoor air quality (IAQ)
  - →understanding the level of occupant exposure to various air pollutants

 $\rightarrow$  formulating indoor environmental control strategies

- ← Test concentration  $\Phi_{\theta} \leq$  set limit  $\Phi^* \rightarrow$  acceptable
- ← Test concentration  $\Phi_{\theta}$  > set limit  $\Phi^* \rightarrow$  unacceptable

Long-term and comprehensive measurement?
.....cost, time

#### ightarrow by some sampling scheme

- measurement errors?
  - To what level we should believe in the assessment
  - How to interpret test results for acceptance



## **Epistemic IAQ Assessment**



Event A: Space is unacceptable

Event B: Tested unacceptable

## **Epistemic IAQ Assessment**



Event A: Space is unacceptable

Event B: Tested unacceptable

## Prior knowledge of office IAQ



#### **Uncertainties of sampling schemes**



## **Example for demonstration**

## $+ CO_2$

- relationships between indoor CO<sub>2</sub> concentration and IAQ:
- the health effects of elevated CO<sub>2</sub> concentrations,
- the impact on occupant perceptions of the environment,
- + the relationship with other contaminants,
- outdoor air ventilation rate

# Field measurements (1)

- Application of the epistemic approach to CO<sub>2</sub> level assessment
- A district survey was carried out in 330 offices
- Samples were randomly selected and covered all major commercial regions of office development in Hong Kong
- For determining the prior failure rates of workplace IAQ in this region
- CO<sub>2</sub> levels were measured in the occupied zones during office hours

## Results

+ geometric mean  $\mu_N = 639 \text{ ppm}$ 

set limit Φ<sup>\*</sup> from HKEPD

<800 ppm  $\rightarrow$  Excellent

 $<1000 \text{ ppm} \rightarrow \text{Good}$ 

 only a small number of offices exceeded the two criterion limits set for offices in Hong Kong,

 $- P(A)_{\Omega}^{\Phi^{-800}} = 1 - 0.83 = 0.17 (CI_{95} = 0.13 - 0.20)$ 

 $- P(A)_{\Omega}^{\Phi^{*}=1000} = 1 - 0.97 = 0.03 \ (CI_{95} = 0.01 - 0.04).$ 

# Field measurements (2)

- To quantify the probable errors associated with some sampling schemes, a one-year CO<sub>2</sub> measurement was also conducted in an in-use office building
- open-plan offices
- an independent air handling unit (AHU) for each office floor
- supply 20% fresh air and 80% re-circulated air mix.
- CO<sub>2</sub> concentrations were measured at a number of comparable spatial locations on one open-plan office floor
- in the occupied period on all working days for one year

# Uncertainties of some sampling schemes over a measurement period



Measurement period  $\tau_{M}$  (h)

 $\varepsilon = \sigma_{\theta} / \mu_{\theta}$ 

#### Maximum test values $\Phi_{\theta}$ for satisfactory IAQ at indoor $CO_2$ level $\Phi^*$

Test CO $_2$  concentration  $\Phi_{ extrm{ heta}}$  (ppm)



0.02 0.01

0.005

Uncertainty ratio  $\varepsilon$  of a sampling scheme

# Probability of unsatisfactory IAQ against test $CO_2$ concentration $\Phi_{\theta}$ for an office in Hong Kong





Sample average  $CO_2$  concentration  $\Phi_{\theta}$  (ppm)

# **Conclusion**

- Long-term measurement could be the best channel to identify indoor air pollution mitigation needs, but it usually requires considerable measurement efforts to attain accurate results.
- Preliminary IAQ assessment for offices in Hong Kong was thus proposed.
- To avoid overreliance on the assessment results, measurement uncertainty must be considered as well.
- This study proposed that regional survey results of IAQ could be treated as a prior understanding in an epistemic approach to assessing the acceptance of an indoor environment in the region.

# **Conclusion**

- CO<sub>2</sub>, a common pollutant found in air-conditioned offices, was used as an example to demonstrate the application of the epistemic IAQ assessment method.
- The prior failure rates of offices were determined from a large scale regional survey of 330 air-conditioned offices in Hong Kong.
- Taking the sampling uncertainty into account, the acceptance of office IAQ was evaluated based on a test CO<sub>2</sub> level against an action CO<sub>2</sub> level.
- With an 'agreed' range of acceptable assessment uncertainties, different parties involved in IAQ monitoring can make better decisions to devise the appropriate and cost-effective sampling strategies for IAQ control and improvement.

# Acknowledgment

The work described in this paper was substantially funded by a grant from the Research Grants Council of HKSAR, China (Project No. PolyU 5248/06E, Account Code BQ01G).

