

Data analysis of the reactor pressure, coolant level and main recirculation flow calibration data and failure events for Olkiluoto 1 and Olkiluoto 2

> PSAM9 Conference Hong Kong, May 19-23, 2008

2008/6/3

Contents

- TVO in a nutshell
- Introduction
- Analysis content
 - Analysis of calibration data
 - Analysis of failure events
 - PRA evaluation
- Results and conclusions

Teollisuuden Voima Oy (TVO)

Company

- Privately owned power company in Finland
- Established in 1969
- Personnel about 700
- Annual turnover about million 230 M€
- Sells electricity only to the shareholders at cost basis

Existing NPP Units (Olkiluoto 1 and Olkiluoto 2)

- 2 x 860 MW, BWR, Westinghouse Atom
- Commercial operation 1979 and 1982
- Modernization and upgrade in 1994-1998 and 2005-2006

New NPP Unit (Olkiluoto 3)

- 1 x 1,600 MW, PWR, Framatome-Siemens consortium
- Commercial operation in 2011

Coal Condensing Power Plant Unit (Meri-Pori)

• 257 MW stake in 565 MW coal condensing unit

Subsidiaries

- Posiva Oy (60%), responsible for the final disposal of spent fuel
- TVO Nuclear Services Oy (100 %), specialized in know-how consulting

Introduction

Surveillance test evaluation

- Internal project started 2001
- Tests included in Technical Specifications
- Limited to tests that are performed during annual outages
- Risk informed approach

• Main goals

- Possibilities to reduce the effort put on testing activities
- To study the possible improvement of test procedures
 - Risk reduction possibilities e.g. with alternative test arrangements

Organizations involved

- Nuclear Safety, Operational Safety, Operation and Maintenance
 - comprehensive aspects from safety, operation and maintenance were gained in the decision-making process

Introduction continues...

- Case study calibrations of reactor measurements
 - reactor pressure, coolant level and main recirculation flow
 - 211K101- K104, 211K111 K114
 - 211K401- K404, 211K411 K414
 - 211K301- K304, 211K311 K314
 - **Calibration interval extension?**
 - Sequential versus staggered testing?
- **OL1/OL2** Operating experience, historical data
 - Analysis of calibration data
 - Analysis of failure reports
 - Analysis of IE's (PRA)
- **OL1/OL2 PSA model**
 - Determination of risk significance of calibrations

URISTINLE

Analysis of the calibration data

- Source:
 - Plant specific database for calibration data (EERO)
 - Contains information of all components included in a measurement chain
 - Calibration measurement data
 - Calibration points within measurement range
 - » e.g. fine pressure 60...80 bar, fine level +2,5...+6,4 m
 - Calibration is performed once per year in connection of annual outage
- Time period:
 - Calibration data from years 1982-2000

Example of pressure measurement

Analysis of the calibration data, cont.

Equipment	Action limit			
transmitter (level, pressure, flow, temperature)	± 0,08 mA			
isolation amplifier	± 50 mV			
electronic-limit switch	± 30 mV			
IU-converter	± 50 mV			
summing amplifier	± 50 mV			
majority switch	± 50 mV			

Analysis of the calibration data, cont.

OL2, Pressure measurement Calibrations (1986-2000)	Frequency of exceeding the action limit (1/year)
Transmitters (F)	0,48
Transmitters (C)	0,03
Transmitters (F&C)	0,26
IU conv.,, QAIC	0,007
UU conv., QAGO	0,002
Electronic limit switch (F)	0,035
Electronic limit switch (C)	0,029

Analysis of failure events

• Plant specific maintenance database as source

- "TTJ" (former ATV)
 - Analysis of failure events reported
 - Covers time period 1983-2001
 - Critical failures and their failure modes in measurement chains
- Simplified approach was applied
 - criticality classification
 - critical, repair critical, non critical
 - failure mode for critical failures
 - according to coding and description in the failure report
 - e.g. "spurious output" or "no output"

Analysis of failure reports, cont.

Failure reports 83-01

Reactor Pressure					Reactor level				
OL1	tot	Cri	Rcri	Ν	OL1	tot	Cri	Rcri	Ν
211K101-K104	2			2	211K401-K404	8	1	3	4
211K111-K114	4		1	3	211K411-K414	8	1	3	4
Total OL1	6	0	1	5	Total OL1	16	2	6	8
OL2	tot	Cri	Rcri	N	OL2	tot	Cri	Rcri	N
211K101-K104	4	•	3	1	211K401-K404	10	4	3	3
211K111-K114	2			2	211K411-K414	16	4	9	3
Total OL2	6	0	3	3	Total OL2	26	8	12	6
Fine pressure OL1/OL2	6	0	3	3	Fine Level OL1/OL2 yht.	18	5	6	7
Coarse Pressure OL1/OL2	6	0	1	5	Coarse Level OL1/OL2 yht.	24	5	12	7
Total OL1/OL2	12	0	4	8	Total OL1/OL2	42	10	18	14
 12 failures are reported no critical failures 					 42 failure reported - 10 critical failures 7 cases - no output transmitter failures 1 human error maintenance and restoration of measurement channel 2 spurious inadvortent trip of one channel 				

Analysis with OL1/OL2 PRA model

Modelling in OL1/OL2 PRA

- Component boundary components from transducer up to the electronic limit switch in each measurement channel
 - Reactor pressure
 - 211K101 211K104 P/I low signal
 - 211K111 211K114 P/I high signal
 - Reactor level
 - 211K401 211K404 DP/I high signal
 - 211K411 211K413 DP/I high signal
 - Reactor flow
 - 211K301-K304, K311-K314 not modelled (MC- flow signal)
- Electronic limit switches different actuation set-points
 - Level limit values H2, L2, L3, L4
 - Pressure, limit values H4 and L3
 - Impulse lines & 516-logic is modelled, but not considered in this analysis

Analysis with OL1/OL2 PRA model, cont.

- Initiating event for OL1/OL2 units (1983-2001)
 - No plant disturbance has been occurred due to reactor pressure, reactor level or reactor flow measurements
- In connection of RPS (516) system analysis in PRA
 - Multiple human errors related to calibration treated as "CCFs"
 - Significant contributor to CDF
 - Modeling of multiple human error in X1/I2 calibration
 - Low level in reactor pressure vessel (X1:L3=2,0m / l2:L4=0,7m)
 - Most important "multiple human error" probability is estimated to be rather low 2.10⁻⁵
 - Already reduced some years ago after the test procedure changes

Analysis with OL1/OL2 PRA, cont.

- PRA model (Rev. 334)
 - Reactor pressure and level measurement
 - contribution to the core damage frequency without considering system 516 and impulse lines in system 211
 - $\sim 2,6.10^{-6}$ 1/ra thus 13 % of total CDF (~2.10⁻⁵ 1/year)
 - The most important contributors
 - human errors, especially multiple errors in calibration (CCF)
 - Fussel-Vesely importance measure is 13%
 - Risk increase factor 650
 - most important RPS conditions I2/X1 of reactor level measurement

Results and conclusions

- In past sequential calibrations have been performed annually during the outages (four-fold trains A, B, C and D)
- Based on the study the calibration interval could be extended according to calibration data and failure data analysis with exception
 - Flow measurement
 - the calibration interval could be longer, but due to operational reasons the calibration is needed every outage after refueling – thus no change proposed
- According to PRA study the core damage risk can be reduced significantly
 - if the calibrations are staggered in train pairs
 - the threefold and quadruple calibration errors can be eliminated practically
 - Trains A and C will be calibrated every second year and trains B and D correspondingly

Results and conclusions, cont.

- Technical Specification change application was sent to STUK
 - change in reactor and pressure level measurements
 - consisted on the proposal of staggering the calibration activity
- STUK accepted this proposal at the end of the year 2005
 - effective during the outages 2006

Thank you!

TVO

TVO

TVO

TVO