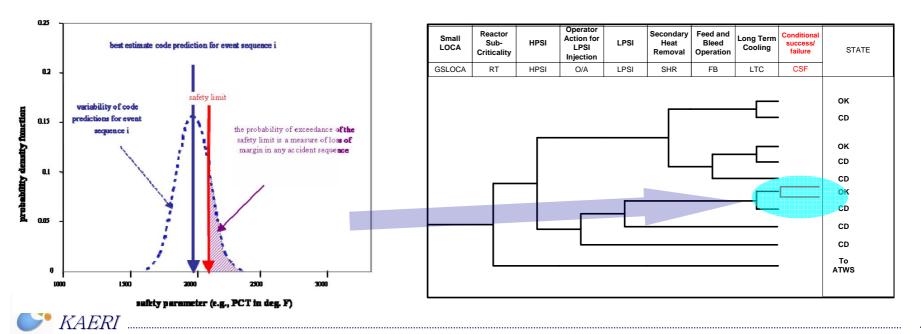
A Pilot Study on The Best-Estimate Thermal-Hydraulic Analysis Methodology Applied For a Probabilistic Safety (Assessment)

#### PSAM9 Integrated Safety Assessment Division, KAERI Ho-Gon LIM/Joon-Eon YANG

## Contents

- Introduction
- OECD/NEA Safety Margin Action Plan
- Procedure For Uncertainty Quantification
  - Accident Sequence Selection
  - Identification Of Important Parameters
  - Calculation for Nominal Plant Condition
  - Calculation to Get the Distribution of The Event Sequence
  - Quantification of Failure Probability of The Event Sequence
- Conclusion And Future Works




### Introduction

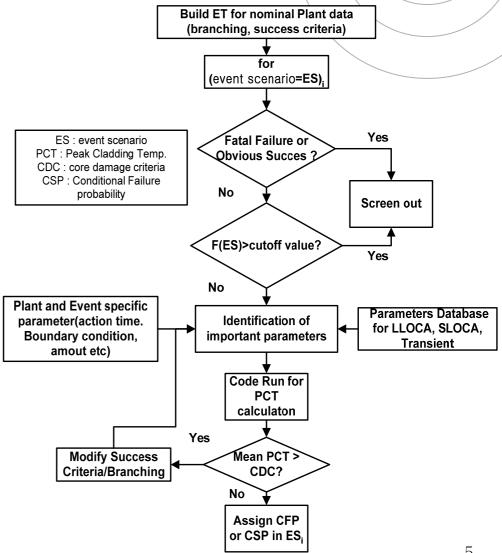
- A thermal/hydraulic (T/H) calculation and an expert judgement are used to develop event trees (ET).
- Conservative approach was implemented to compensate the uncertainty.
  - The conservative approach can distort the results of PSA (shadow effect).
- Recently, the use of best-estimate T/H code is emphasized
  ASME PRA Standard
- There is a concern about hot to deal with the uncertainty caused by to the best-estimate analysis
  - We proposed a procedure to quantify the uncertainty due to the best-estimate analysis



### OECD/NEA Safety Margin Action Plan

- Calculate the distribution of safety criteria (PCT, RCS pressure)
- Compare to Safety Limit (ex. 2200 °F) and calculate exceeding probability
- Assign success/failure probability of a event scenario using new event tree heading




#### 5

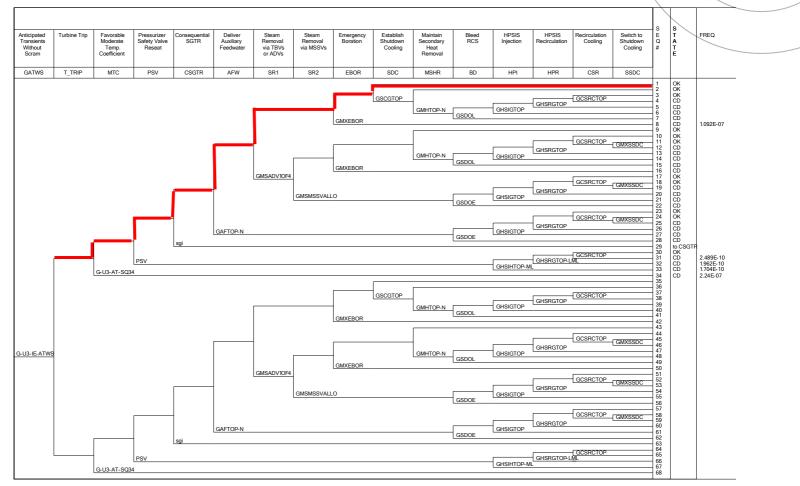
#### Procedure for Uncertainty Quantification

- Construct the ET based on the 0 Nominal Plant Data
  - Eliminate conservative bias
- Screening 0

KAERI

- Fatal failure or obvious success
  - Failure of RHR
  - Normal shutdown procedure in ET
- Insignificant accident scenario
  - $F(ET_i) < \epsilon$
- Identification of Parameters 0
  - Important parameters affecting accident progression
    - Code and plant specific parameters
- Calculation based on Random 0 Sampling
  - 10CFR50.46 alternative
    - Response surface construction
  - 100 random sampling in the present study
    - Sampling method is not fixed vet.
- Feedback to existing ETs or conditional failure probability quantification




## Accident sequence Selection(1/2)

- Anticipated Transient Without Scram (ATWS)
- Characteristics of a selected scenario
  - Composed of successful turbine trip, favourable exposure time, PSV reseat, and so on
  - An event sequence with the largest frequency
  - Large uncertainty exist due to reactivity feedback and the pressure relieving characteristics
  - The unfavourable exposure time (UET) is determined based on the nominal plant data



#### Accident sequence Selection(2)

#### • ATWS first scenario #1 in Ulchin 3&4 in Korea





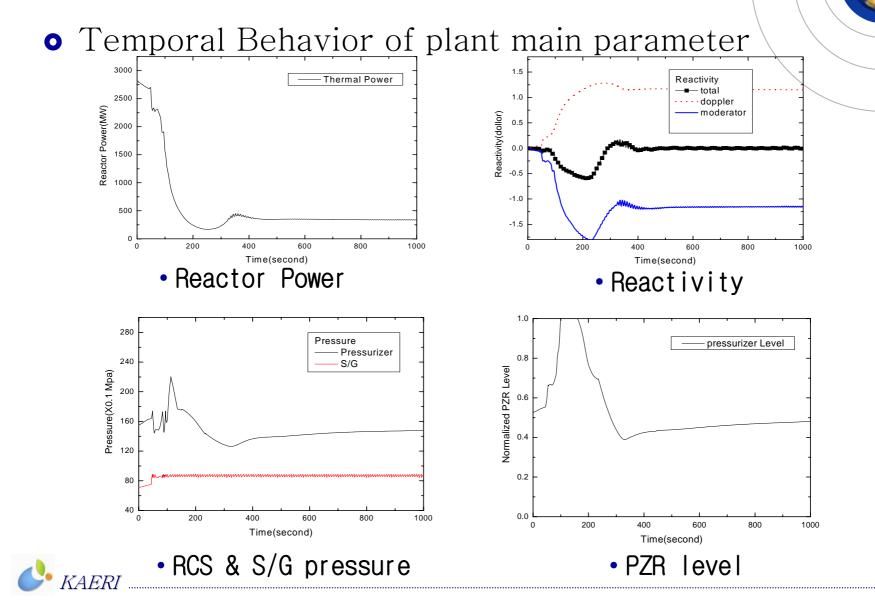
## IDENTIFICATION OF THE IMPORTANT PARAMETERS (1/2)

- It is necessary to know the parent distribution effectively under the given calculation resources
- General Procedure for Parameter Selection
  - Identification of important phenomena in the accident scenario
  - Identification of parameters in code describing the important phenomena
  - Ranking their importance in terms of  $\Delta PCT$  or  $\Delta p_{op}$
- In the Present analysis
  - Simplified phenomena identification and parameter selection procedures
  - No ranking process



## IDENTIFICATION OF THE IMPORTANT PARAMETERS (2/2)

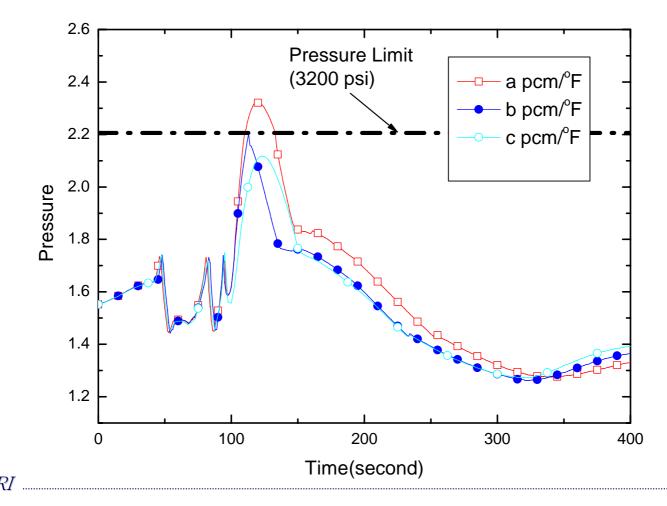
| phenomena                                   | parameter                       | variable distribution |        |        | Selection |                   |   |
|---------------------------------------------|---------------------------------|-----------------------|--------|--------|-----------|-------------------|---|
|                                             |                                 | Dist.                 | 2σ     | min    | max       | Nominal<br>(mean) |   |
| RCS pressure<br>relieving valve<br>capacity | opening set pressure(bar)       | Normal                | 2.76   | 171.03 | 175.17    | 172.41            | 0 |
|                                             | PSV discharge rate(kg/s)        | Normal                | 10.79  | 57.96  | 79.55     | 68.75             | 0 |
| Reactivity feedback                         | Fuel-Clad conductivity          |                       |        |        |           |                   | Х |
|                                             | Clad-coolant conductivity       |                       |        |        |           |                   | Х |
|                                             | initial coolant temperature     |                       |        |        |           |                   | Х |
| Pressurizer solid state                     | pressurizer water level (meter) |                       | 0.67   | -0.381 | 0.9652    | 0(50%)            | 0 |
| Heat transfer to secondary side             | Aux. capacity                   |                       |        |        |           | 500 gpm bound     | Х |
|                                             | delay time                      |                       |        |        |           | 45 second bound   | Х |
|                                             | Aux. temp.(K)                   |                       | 22.22  | 277.44 | 321.89    | 293               | 0 |
|                                             | Convective heat transfer coeff. |                       |        |        |           |                   | Х |
|                                             | turbine trip time               |                       |        |        |           |                   | Х |
|                                             | MSSV flow rate                  |                       | 134.61 | 722.75 | 991.97    | 857.34            | Х |
|                                             | MSSV set pressure               |                       | 1.03   | 85.52  | 87.59     | 86.21             | 0 |
|                                             | MSIV closing<br>Time            |                       |        |        |           | 5                 | х |




## Nominal Event Calculation (1/3)

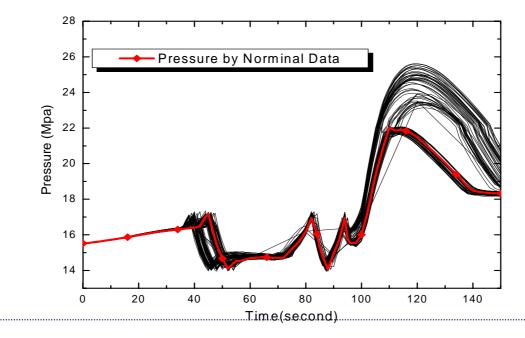
#### • Event history for nominal plant state

| Time (sec) | Event                                                                       |  |  |  |
|------------|-----------------------------------------------------------------------------|--|--|--|
| 0.0        | Loss of main feedwater (representative ATWS IE)                             |  |  |  |
| 42.8       | RCS trip set point by PZR high pressure(164 bar)                            |  |  |  |
| 53.5       | Auxiliary Feed water actuation set point by S/G low level                   |  |  |  |
| 63.8       | S/G dryout                                                                  |  |  |  |
| 72.01      | PZR Safety valve opening set pressure                                       |  |  |  |
| 81.9       | First PZR blowdown pressure                                                 |  |  |  |
| 83.72      | Main steam line isolation valve (MSIV) closing set point by lov<br>pressure |  |  |  |
| 86.0       | Second opening of PZR safety valve                                          |  |  |  |
| 88.72      | Complete closing of MSIV                                                    |  |  |  |
| 95.1       | PZR solid state                                                             |  |  |  |
| 98.5       | AFW start                                                                   |  |  |  |
| ~100       | Hot leg saturation pressure                                                 |  |  |  |
| 115.1      | RCS peak pressure                                                           |  |  |  |
| 159.       | MSSV set point by S/G high pressure                                         |  |  |  |
| 1000.0     | Calculation terminated                                                      |  |  |  |


#### Nominal Event Calculation (2/3)



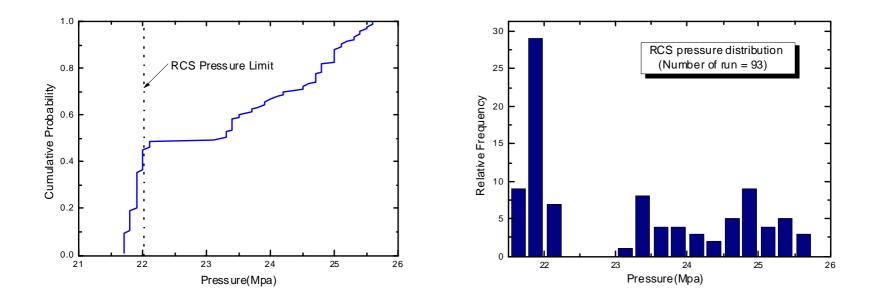
11


## Nominal Event Calculation (3/3)

• Determination of UET (Unfavorable Exposure Time) according to the fuel burn-up



# Calculation to Get the Distribution of The Event Sequence (1/2)


- 100 sampling calculation for the selected parameters based on their probability density function)
- 95/95 approach based on Wilk's formula is not applied
- The calculation by the nominal data is covered well by the sampling calculation results
- There is a bifurcation in the calculation, which has frequently appeared in a BE T/H calculation





#### Calculation to Get the Distribution of The Event Sequence (1/2)

- The distribution has a camelback shape due to a bifurcation of the calculation
- The failure probability of the event sequence is given as 0.55 approximately





#### Quantification of the Event Sequence Failure Probability

- In a PSA, the frequency of success scenario is not quantified
  - Conservativeness of success scenario
- Event Scenario frequency

$$f_{ES_i} = f_{ES} \cdot p\left(\prod_{j=1}^{n-m} S_j \cdot \prod_{k-n-m}^{n} \overline{S}_k\right)$$

 $f_{ES_i}$ : Frequency of the event sequence, i

- $S_j$  : The failure event of system, j
- $f_{ES}$  : Initiating event frequency

• The frequency of success sequence is 6.183E-6 - The failure frequency is 3.4E-6

#### Conclusion & future work

#### • Conclusion

- Best-estimate thermal-hydraulic approach to calculate the uncertainty of an event sequence is implemented
- ATWS was selected as a pilot study
- The RCS pressure was used for the core damage criterion
- Although all the important parameters was not identified and used in the calculation, we demonstrated the possibility that the conditional failure probability can be calculated through the best-estimate T/H calculation

#### • Future Work

- Determination of sampling method and number of sampling
- Application for whole event trees considered in a PSA model

