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Introduction

A thermal/hydraulic (T/H) calculation and an expert judgement 
are used to develop event trees (ET). 

Conservative approach was implemented to compensate the  
uncertainty.  

– The conservative approach can distort the results of PSA (shadow
effect).

Recently, the use of best-estimate T/H code is emphasized 

– ASME PRA Standard

There is a concern about hot to deal with the uncertainty 
caused by to the best-estimate analysis

– We proposed a procedure to quantify the uncertainty due to the 
best-estimate analysis
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OECD/NEA Safety Margin Action Plan
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Procedure for Uncertainty Quantification

Construct the ET based on the 
Nominal Plant Data

– Eliminate conservative bias

Screening
– Fatal failure or obvious success

• Failure of RHR

• Normal shutdown procedure in ET

– Insignificant accident scenario
• F(ETi)< ε

Identification of Parameters 
– Important parameters affecting 

accident progression
• Code and plant specific parameters

Calculation based on Random 
Sampling 

– 10CFR50.46 alternative
• Response surface construction

– 100 random sampling in the present 
study
• Sampling method is not fixed yet.

Feedback to existing ETs or 
conditional failure probability 
quantification
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Accident sequence Selection(1/2)

Anticipated Transient Without Scram (ATWS)

Characteristics of a selected scenario
– Composed of successful turbine trip, favourable exposure 

time, PSV reseat, and so on 

– An event sequence with the largest frequency 

– Large uncertainty exist due to reactivity feedback and the 
pressure relieving characteristics

– The unfavourable exposure time (UET) is determined based 
on the nominal plant data 
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Accident sequence Selection(2)

ATWS first scenario #1 in Ulchin 3&4 in Korea
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IDENTIFICATION OF THE 
IMPORTANT PARAMETERS (1/2)

It is necessary to know the parent distribution 
effectively under the given calculation resources

General Procedure for Parameter Selection
– Identification of important phenomena in the accident 

scenario

– Identification of parameters in code describing the 
important phenomena

– Ranking their importance in terms of ΔPCT or Δpop

In the Present analysis
– Simplified phenomena identification and parameter selection 

procedures

– No ranking process
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IDENTIFICATION OF THE 
IMPORTANT PARAMETERS (2/2) 

phenomena parameter variable distribution Selection

Dist. 2σ min max Nominal
(mean)

opening set pressure(bar) Normal 2.76 171.03 175.17 172.41 O

PSV discharge rate(kg/s) Normal 10.79 57.96 79.55 68.75 O

Fuel-Clad conductivity X
Clad-coolant conductivity X
initial coolant temperature X

Pressurizer solid state pressurizer water level (meter) 0.67 -0.381 0.9652 0(50%) O
Aux. capacity 500 gpm bound X

delay time 45 second bound X
Aux. temp.(K) 22.22 277.44 321.89 293 O

Convective heat transfer coeff. X
turbine trip time X
MSSV flow rate 134.61 722.75 991.97 857.34 X

MSSV set pressure 1.03 85.52 87.59 86.21 O
MSIV closing

Time 5 x

Heat transfer to 
secondary side

Reactivity feedback

RCS pressure 
relieving valve 

capacity
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Nominal Event Calculation (1/3)

Event history for nominal plant state
Time (sec) Event

0.0 Loss of main feedwater (representative ATWS IE)

42.8 RCS trip set point by PZR high pressure(164 bar)

53.5 Auxiliary Feed water actuation set point by S/G low level

63.8 S/G dryout

72.01 PZR Safety valve opening set pressure

81.9 First PZR blowdown pressure

83.72
Main steam line isolation valve (MSIV) closing set point by low 

pressure

86.0 Second opening of PZR safety valve

88.72 Complete closing of MSIV

95.1 PZR solid state

98.5 AFW start

~100 Hot leg saturation pressure

115.1 RCS peak pressure

159. MSSV set point by S/G high pressure

1000.0 Calculation terminated
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Nominal Event Calculation (2/3)

Temporal Behavior of plant main parameter 
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Nominal Event Calculation (3/3)

Determination of UET (Unfavorable Exposure Time) 
according to the fuel burn-up
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Calculation to Get the Distribution of The 
Event Sequence (1/2)

100 sampling calculation for the selected parameters based on 
their probability density function)

95/95 approach based on Wilk’s formula is not applied

The calculation by the nominal data is covered well by the 
sampling calculation results 

There is a bifurcation in the calculation, which has frequently 
appeared in a BE T/H calculation 
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Calculation to Get the Distribution of 
The Event Sequence (1/2)

The distribution has a camelback shape due to a 
bifurcation of the calculation 

The failure probability of the event sequence is 
given as 0.55 approximately
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Quantification of the Event Sequence Failure 
Probability 

In a PSA, the frequency of success scenario is not 
quantified 
– Conservativeness of success scenario

Event Scenario frequency

The frequency of success sequence is 6.183E-6
– The failure frequency is 3.4E-6 
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Conclusion & future work

Conclusion
– Best-estimate thermal-hydraulic approach to calculate the 

uncertainty of an event sequence is implemented

– ATWS was selected as a pilot study 

– The RCS pressure was used for the core damage criterion 

– Although all the important parameters was not identified 
and used in the calculation, we demonstrated the possibility 
that the conditional failure probability can be calculated 
through the best-estimate T/H calculation

Future Work
– Determination of sampling method and number of sampling

– Application for whole event trees considered in a PSA 
model  
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