Decision Analysis and Risk Management

George E. Apostolakis Massachusetts Institute of Technology apostola@mit.edu

Presented at PSAM 9 Hong Kong May 19, 2008

Why decision analysis?

- A number of decision alternatives must be evaluated (prioritized).
- The decision maker must perform tradeoffs among a number of objectives.
 - In current practice, we usually deal with a small number of objectives, e.g., the minimization of the frequency of an undesirable event, the maximization of the reliability of a component or system.
 - If we include attributes such as cost, image, and other impacts, the choice of the best decision option is not obvious.
- Several stakeholders may be involved.

Formal Analysis

- What is important to the decision? (Objectives)
- To what extent are the objectives satisfied? (*Performance Measures; Attributes*)
- What is the relative importance of the performance measures? (*Weights*)
- How does the decision option rate with respect to each of the performance measures? (*Utility or Value Functions*)
- How do I decide? (Decision Rule)

$$\overline{\mathbf{PI}}_{\mathbf{j}} = \sum_{i=1}^{N_{\text{FM}}} \mathbf{W}_{i} \overline{\mathbf{U}}_{ij}$$

Value of Formal Analysis

- Provides a systematic way to process large amounts of information.
- The decision-making process is explicit and communication is enhanced.
- Provides formal rules for quantifying preferences.
- The results should be input to an integrated decisionmaking process (deliberation).

The Analytic-Deliberative Process

- <u>Analysis</u> uses rigorous, replicable methods, evaluated under the agreed protocols of an expert community - such as those of disciplines in the natural, social, or decision sciences, as well as mathematics, logic, and law - to arrive at answers to factual questions.
- <u>*Deliberation*</u> is any formal or informal process for communication and collective consideration of issues.

National Research Council, Understanding Risk, 1996.

Objectives Hierarchy: Environmental Cleanup, 1

6

Objectives Hierarchy: Environmental Cleanup, 2

Objectives Hierarchy: Environmental Cleanup, 3

Some stakeholders placed public health & safety under "environment."

8

Efficient Prioritization of Infrastructure Renewal Projects in MIT's Department of Facilities

Constructed Scales

Interruption of Operations: Interruption Time

Level	Description	Value
4	Extreme interruption (more	1.00
	than 6 months)	
3	Major interruption	0.57
	(1 to 6 months)	
2	Moderate interruption	0.19
	(1 to 4 weeks)	
1	Minor interruption	0.06
	(less than 1 week)	
0	No interruption	0.00

USNRC: Prioritization of Inspections, Tests, Analyses, and Acceptance Criteria (ITAAC)

- Hundreds of ITAACs over the years.
- The ITAACs themselves are not prioritized; rather, the value of inspecting an ITAAC so that the NRC's ability to detect a significant flaw is maximized.
- Five Performance Measures are used:
 - Safety Significance
 - Propensity of Making Errors
 - Construction and Testing Experience
 - Opportunity to Verify by Other Means
 - Licensee (or applicant) Oversight Attention

A Constructed Scale

> Propensity of Making Errors

- *High* = A high probability of error in the process or activity due to inherent difficulties
- Medium = Some complexity or difficulty of activity that could directly lead to errors
- Low = A small probability of error in process or activity as a result of its simplicity or the routine-nature of the activity.

NASA Procedural Requirements (NPR: 8715.3A, 2006)

Decision Rule

$$\overline{\mathbf{PI}}_{j} = \sum_{i=1}^{N_{PM}} \mathbf{W}_{i} \overline{\mathbf{U}}_{ij}$$

• The weights are scaling factors that sum to unity

$$\sum_{1}^{N_{\text{PM}}} \mathbf{W}_{i} = \mathbf{1}$$

• They represent trade-offs between PMs. They can be assessed directly or using structured approaches, such as SMART and AHP. The DM has the final approval.

STAKEHOLDER RANKINGS AND WEIGHTS

Category Stakeholder	Programmatic	Life Cycle Cost	Socioeconomic	Cultural	Environment	Human Health & Safety
SH1	4 (8)	3 (11)	6 (4)	6 (4)	2 (34)	1 (39)
SH3	6 (2)	4 (7)	5 (4)	3 (8)	2 (39)	1 (40)
SH4	5 (5)	4 (8)	2 (25)	6 (4)	3 (17)	1 (41)
SH6	4 (12)	6 (5)	3 (13)	5 (10)	2 (27)	1 (33)

SH2	5 (2)	3 (14)	6 (2)	4 (6)	1 (38)	1 (38)
SH5	6 (3)	4 (10)	5 (4)	3 (11)	2 (20)	1 (52)

STAKEHOLDERS						
RAA	1	2	3	4	5	6
Α	.094 (6)	.048 (6)	.071 (6)	.053 (6)	.050 (6)	.130 (5)
В	.205 (4)	.172 (3)	.154 (4)	.111 (5)	.091 (2)	.159 (2)
С	.216 (3)	.128 (4)	.177 (3)	.122 (3)	.091 (3)	.155 (3)
D	.183 (5)	.115 (5)	.179 (2)	.120 (4)	.082 (5)	.139 (6)
E	.223 (2)	.185 (2)	.132 (5)	.135 (1)	.107 (1)	.114 (4)
F	.258 (1)	.205 (1)	.181 (1)	.128 (2)	.089 (4)	.194 (1)

Performance Indices and RAA rankings for all stakeholders.

Stakeholder 1	Stakeholder 2	Stakeholder 3
RAA F is preferred		
Does not employ workers, no worker health risk	RAA F is preferred	RAA F is slightly preferred over the other RAAs
Does not generate waste	No short term public accident risks	No worker injuries unlike the other RAAs yet leaves the
Leaves contaminant in the ground	Strong concern for public health	contaminant in the ground
		Transportation of waste is the performance measure which
RAA C and RAA E are less preferred than RAAF	RAA E performs worse than RAA F	adversely affects the other RAAs in comparison to F
B and C have substantial reduction in groundwater	E has more transported wastes	
contaminant risks	lower performance on implementation costs,	RAA C and RAA D perform closely with RAA F
RAA F performs better in Worker health risk	due to the number of workers and trucks involved	The tradeoff here is that they remove the contaminant which
C has higher completion costs	E is better than F in removal of contaminant yet poor	counteracts their poor performance in regards to worker health
E transports more wastes off-site	performance in short term health due to transportation of	
	waste	RAA B is average
RAA B is slightly less preferred than C & E		B performs worse than C and D in contaminant removal since the
Yields a higher amount of contaminant in the groundwater	RAA B is similar to E in preference	contaminant remains on site
	B is on-site and thus lower costs and less transported waste	B has a lower Completion Cost than C and D
RAA D is less preferred than B	B has higher long term public risk of cancer	
Transports more waste off site		RAA E is less preferred
RAA D has a higher completion cost	RAA C and D are less preferred	High Implementation Cost
RAA A is inferior to other RAAs	higher completion cost due to technology (thermal	Significant ER and Transported Waste compared to C and D
High completion cost	desorption) and the cost of the disposal of the treatment of	Higher volume of transported waste, therefore E is more costly
High worker health risk	the residuals.	
Uncertainty analyses on performance output indicates that the		RAA A gives substantially lower performance
rankings of RAA B, C, and F are not significantly different.	D transports wastes off-site which leads to higher costs	In-situ Vitrification which yields high worker health risks
RAA F and B indicate a lower uncertainty & perhaps less	RAA A is least preferred	Uncertainty analyses on the performance output of the RAAs
likely to fluctuate in the deliberation. E and A appear stable	Poor performance under worker and public health risks	show that these preferences are rather stable and that F, D and C
(quantitatively).	High completion cost.	are not markedly different.

Major Contributors to Individual Stakeholder Preferences

Deliberation

Role of the stakeholders

- Influence the decision maker's choice
- Communicate concerns, interests, and ideas
- Listen actively

Role of the Analysts

- Provide clarification on technical questions
- Provide technical data on the impacts of each RAA

Role of the Mediator

- Guide deliberation
- Promote understanding of all viewpoints
- Facilitate discussion
- Promote a fair and wise process
- Identify major reasons for agreement and disagreement

Points of Agreement

- Dislike of in-situ vitrification of RAA A.
- Dislike of "no action" alternative F.
- Dislike of RAA E; do not transport waste to other communities.
- Cr is not a primary concern for long-term health, consequently, the stakeholders are willing to tradeoff more CR left in the ground for less TCE left in the ground.

Final Consensus

ļļii

Hybrid RAA	Changes from original	Description
C ⁺	Off-site, rather than on-site,	Excavation and thermal
	disposal of organics (TCE).	desorption of organics to be
		disposed of off-site.
		Soil stabilization of metals (Cr)
		with on- site treatment.
\mathbf{A}^{+}	No in-situ vitrification.	Soil vapor extraction for TCE.
		In-situ stabilization for Cr.
\mathbf{F}^+	Added action of focused soil	Continue with Voluntary
	vapor extraction for TCE.	Correction Measures, with the
<		addition of focused soil vapor
		extraction for TCE. No action
		for Cr.